【題目】已知橢圓
:
的右焦點(diǎn)為
,過(guò)點(diǎn)
的直線(不與
軸重合)與橢圓
相交于
,
兩點(diǎn),直線
:
與
軸相交于點(diǎn)
,過(guò)點(diǎn)
作
,垂足為D.
(1)求四邊形
(
為坐標(biāo)原點(diǎn))面積的取值范圍;
(2)證明直線
過(guò)定點(diǎn)
,并求出點(diǎn)
的坐標(biāo).
【答案】(1)
;(2)證明見解析,![]()
【解析】
(1)由題意設(shè)直線AB的方程,代入橢圓整理得縱坐標(biāo)之和與之積,將四邊形的面積分成2個(gè)三角形,根據(jù)底相同,列出關(guān)于面積的函數(shù)式,再結(jié)合均值不等式可得面積的取值范圍;
(2)由(1)得B,D的坐標(biāo),設(shè)直線BD 的方程,令縱坐標(biāo)為零得橫坐標(biāo)是定值,即直線BD過(guò)定點(diǎn).
(1)由題F(1,0),設(shè)直線AB:
,
聯(lián)立
,消去x,得
,
因?yàn)?/span>
,
,
則![]()
所以四邊形OAHB的面積
,
令![]()
因?yàn)?/span>
(當(dāng)且僅當(dāng)t=1即m=0時(shí)取等號(hào)),所以
,
所以四邊形OAHB的面積取值范圍為
;
(2)
,所以直線BD的斜率
,所以直線BD的方程為
,
令y=0,可得
①
由(1)可得![]()
化簡(jiǎn)①可得![]()
則直線BD過(guò)定點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左右焦點(diǎn)分別為
,
,左頂點(diǎn)為
,點(diǎn)
在橢圓
上,且
的面積為
.
(1)求橢圓
的方程;
(2)過(guò)原點(diǎn)
且與
軸不重合的直線交橢圓
于
,
兩點(diǎn),直線
分別與
軸交于點(diǎn)
,
,.求證:以
為直徑的圓恒過(guò)交點(diǎn)
,
,并求出
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若曲線
在
處的切線方程為
,求
的值;
(2)在(1)的條件下,求函數(shù)
零點(diǎn)的個(gè)數(shù);
(3)若不等式
對(duì)任意
都成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為
的正方形
中,線段BC的端點(diǎn)
分別在邊
、
上滑動(dòng),且
,現(xiàn)將
,
分別沿AB,AC折起使點(diǎn)
重合,重合后記為點(diǎn)
,得到三被錐
.現(xiàn)有以下結(jié)論:
![]()
①
平面
;
②當(dāng)
分別為
、
的中點(diǎn)時(shí),三棱錐
的外接球的表面積為
;
③
的取值范圍為
;
④三棱錐
體積的最大值為
.
則正確的結(jié)論的個(gè)數(shù)為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
經(jīng)過(guò)點(diǎn)
,其傾斜角為
,以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸,與直角坐標(biāo)系
取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和極坐標(biāo)方程;
(2)若直線
與曲線
有公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,
軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為
,若直線l經(jīng)過(guò)點(diǎn)P,且傾斜角為
,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
)的周期為
,圖象的一個(gè)對(duì)稱中心為
將函數(shù)
圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將所有圖象向右平移
個(gè)單位長(zhǎng)度后得到函數(shù)
的圖象.
(1)求函數(shù)
與
的解析式;
(2)當(dāng)
,求實(shí)數(shù)
與正整數(shù)
,使
在
恰有2019個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
討論函數(shù)
的單調(diào)性;
設(shè)
,對(duì)任意
的恒成立,求整數(shù)
的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com