分析 (Ⅰ)利用已知條件化簡(jiǎn)出${S}_{n}^{2}-{S}_{n-1}^{2}=1$,即可說(shuō)明$\{S_n^{2}\}$是首項(xiàng)為1,公差為1的等差數(shù)列.
(Ⅱ) 求出$S_n^{2}=1+n-1=n$,通過(guò)an=Sn-Sn-1(n≥2求出通項(xiàng)公式.
(Ⅲ)化簡(jiǎn)$_{n}=\frac{{(-1)}^{n}}{{a}_{n}}$,當(dāng)n為奇數(shù)時(shí),當(dāng)n為偶數(shù)時(shí),分別求出前n項(xiàng)和即可.
解答 (本小題滿分12分)
(Ⅰ)由題意知$2{S_n}={a_n}+\frac{1}{a_n}$,即$2{S_n}{a_n}-{a_n}^2=1$,①----------------------(1分)
當(dāng)n=1時(shí),由①式可得S1=1;----------------------(2分)
又n≥2時(shí),有an=Sn-Sn-1,代入①式得$2{S_n}({S_n}-{S_{n-1}})-{({S_n}-{S_{n-1}})^2}=1$
整理得${S}_{n}^{2}-{S}_{n-1}^{2}=1$.----------------------(3分)
∴$\{S_n^{2}\}$是首項(xiàng)為1,公差為1的等差數(shù)列.----------------------(4分)
(Ⅱ) 由(Ⅰ)可得$S_n^{2}=1+n-1=n$,----------------------(5分)
∵{an}是各項(xiàng)都為正數(shù),∴${S_n}=\sqrt{n}$,----------------------(6分)
∴${a_n}={S_n}-{S_{n-1}}=\sqrt{n}-\sqrt{n-1}$(n≥2),----------------------(7分)
又${a_1}=S_1^{\;}=1$,∴${a_n}=\sqrt{n}-\sqrt{n-1}$.----------------------(8分)
(Ⅲ)${b_n}=\frac{{{{(-1)}^n}}}{a_n}=\frac{{{{(-1)}^n}}}{{\sqrt{n}-\sqrt{n-1}}}={(-1)^n}({\sqrt{n}+\sqrt{n-1}})$,----------------------(9分)
當(dāng)n為奇數(shù)時(shí),${T_n}=-1+(\sqrt{2}+1)-(\sqrt{3}+\sqrt{2})+…+(\sqrt{n-1}+\sqrt{n-2})-(\sqrt{n}+\sqrt{n-1})=-\sqrt{n}$
當(dāng)n為偶數(shù)時(shí),${T_n}=-1+(\sqrt{2}+1)-(\sqrt{3}+\sqrt{2})+…-(\sqrt{n-1}+\sqrt{n-2})+(\sqrt{n}+\sqrt{n-1})=\sqrt{n}$
∴{bn}的前n項(xiàng)和${T_n}={(-1)^n}\sqrt{n}$.----------------------(12分)
點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,通項(xiàng)公式的求法,考查分析問(wèn)題解決問(wèn)題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?x0∈R,ln(x02+1)<0 | |
| B. | 若q是?p成立的必要不充分條件,則?q是p成立的充分不必要條件 | |
| C. | ?x>2,x2>2x | |
| D. | 若x≠kπ(k∈Z),則sin2x+$\frac{2}{sinx}$≥3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ②③ | B. | ③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com