欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)f(x)=x2+ax是R上的偶函數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)用定義證明:f(x)在(0,+∞)上為增函數(shù).
分析:(I)由f(x)是偶函數(shù),即f(-x)=f(x),求得a的值;
(Ⅱ)用定義證明f(x)的單調(diào)性,基本步驟是:取值,作差,判正負(fù),下結(jié)論.
解答:解:(I)對任意的x∈R,-x∈R,
∴f(-x)=(-x)2+a(-x),
即f(-x)=x2-ax,
又f(x)是偶函數(shù),∴f(-x)=f(x),
即x2-ax=x2+ax,
∴-a=a,即a=0;
( II)由(I)知f(x)=x2,任取x1,x2∈(0,+∞),且x1<x2,
則f(x1)-f(x2)=x12-x22=(x1+x2)(x1-x2),
∵x1,x2∈(0,+∞),x1<x2
∴x2+x1>0,x1-x2<0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2);
∴f(x)在(0,+∞)上是增函數(shù).
點評:本題考查了函數(shù)奇偶性的應(yīng)用與單調(diào)性的判定問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|.
(1)當(dāng)a=1時,求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)x∈[1,+∞)時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,函數(shù)f(x)=x2+a|lnx-1|
(1)當(dāng)a=1時,求曲線y=f(x)在x=1處的切線方程;
(2)當(dāng)a=3時,求函數(shù)f(x)的單調(diào)性;
(3)當(dāng)x∈[1,+∞)時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)f(x)和g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意的x∈[a,b],都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,設(shè)f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則它的“密切區(qū)間”可以是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+a.記f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,集合M={a∈R|對所有正整數(shù)n,
.
fn(0) 
  
.
≤2}.
證明:M=[-2,
1
4
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國高校自主招生數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

設(shè)f(x)=x2+a.記f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,集合M={a∈R|對所有正整數(shù)n,≤2}.
證明:M=[-2,].

查看答案和解析>>

同步練習(xí)冊答案