分析 要求曲線y2=4x關(guān)于直線x=2對稱的曲線方程,我們可采用坐標(biāo)法,即設(shè)出待求曲線上任一點(diǎn)為P(x,y),然后根據(jù)P點(diǎn)關(guān)于直線x=2對稱的Q(4-x,y)在曲線y2=4x上,然后將Q點(diǎn)代入曲線y2=4x中,即可得到x,y之間的關(guān)系,即為所求曲線的方程.
解答 解:設(shè)曲線y2=4x關(guān)于直線x=2對稱的曲線為C,
在曲線C上任取一點(diǎn)P(x,y),
則P(x,y)關(guān)于直線x=2的對稱點(diǎn)為Q(4-x,y).
因?yàn)镼(4-x,y)在曲線y2=4x上,
所以y2=4(4-x),
即y2=16-4x.
故答案為:y2=16-4x.
點(diǎn)評 本題考查的知識(shí)點(diǎn)是軌跡方程的求法--坐標(biāo)法,其步驟為:設(shè)動(dòng)點(diǎn)坐標(biāo)為P(x,y),然后根據(jù)已知條件用x,y表示與P點(diǎn)相對應(yīng)的在已知曲線上的點(diǎn)Q的坐標(biāo),將Q的坐標(biāo)代入已知曲線的方程,得到x,y的關(guān)系,即為所求曲線的方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. |
| B. |
| ||||||||||||||||
| C. |
| D. |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com