分析 (Ⅰ)如圖1,取CD中點(diǎn)G,連接OG,F(xiàn)G,利用三角形中位線定理與平行四邊形的判定與性質(zhì)定理可得EO∥FG,再利用線面平行的判定定理即可證明:EO∥平面FCD.
(Ⅱ)如圖2,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系.利用向量與數(shù)量積的關(guān)系可得:DE⊥AB,DE⊥AF,即可證明DE⊥平面ABF.
(Ⅲ)設(shè)二面角A-FD-B的大小為θ,θ是銳角,利用向量垂直與數(shù)量積的關(guān)系分別得出平面的法向量,利用cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{AB}|}{|\overrightarrow{n}||\overrightarrow{AB}|}$即可得出.
解答 (Ⅰ)證明:如圖1,取CD中點(diǎn)G,連接OG,F(xiàn)G,![]()
在△CAD中,∵O,G分別是CA,CD的中點(diǎn),
∴OG∥AD,且$OG=\frac{1}{2}AD$,
又由已知得,EF∥AD,且$EF=\frac{1}{2}AD$,
∴$EF\begin{array}{l}{∥}\\=\end{array}OG$,
∴四邊形OGFE是平行四邊形,
∴EO∥FG,
又EO?平面FCD,F(xiàn)G?平面FCD
∴EO∥平面FCD.
(Ⅱ)證明:如圖2,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系.
則A(0,0,0),B(6,0,0),$F(0,3,3\sqrt{2})$,D(0,6,0),$E(0,0,3\sqrt{2})$,
$\overrightarrow{DE}=(0,-6,3\sqrt{2})$,$\overrightarrow{AB}=(6,0,0)$,$\overrightarrow{AF}=(0,3,3\sqrt{2})$.
∴$\overrightarrow{DE}•\overrightarrow{AB}=0$,
且$\overrightarrow{DE}•\overrightarrow{AF}=0-18+18=0$,
∴DE⊥AB,DE⊥AF;
又AB∩AF=A,∴DE⊥平面ABF.
(Ⅲ)解:設(shè)平面BFD的法向量為$\overrightarrow n=(x,y,z)$
由(Ⅱ)知$\overrightarrow{DF}=(0,-3,3\sqrt{2})$,$\overrightarrow{DB}=(6,-6,0)$
∴$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{DF}=-3y+3\sqrt{2}z=0\\ \overrightarrow n•\overrightarrow{DB}=6x-6y=0\end{array}\right.$,令z=1,得$\overrightarrow n=(\sqrt{2},\sqrt{2},1)$,
又平面AFD的法向量為$\overrightarrow{AB}=(6,0,0)$,
設(shè)二面角A-FD-B的大小為θ,θ是銳角,
則$cosθ=\frac{{|{\overrightarrow n•\overrightarrow{AB}}|}}{{|{\overrightarrow n}|•|{\overrightarrow{AB}}|}}=\frac{{6\sqrt{2}}}{{6\sqrt{5}}}=\frac{{\sqrt{10}}}{5}$,
∴二面角A-FD-B的余弦值為$\frac{{\sqrt{10}}}{5}$.
點(diǎn)評 本題考查了三角形中位線定理、平行四邊形的判定與性質(zhì)定理、線面平行的判定定理、向量與數(shù)量積的關(guān)系、法向量與空間角的求法,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com