欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(  )
A.y=|x+2|B.y=|x|+2C.y=-x2+2D.$y={({\frac{1}{2}})^{|x|}}$

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)分別進(jìn)行判斷即可.

解答 解:=|x+2||是非奇非偶函數(shù),則(0,+∞)上單調(diào)遞增,不滿(mǎn)足條件.
y=|x|+2是偶函數(shù),則(0,+∞)上單調(diào)遞增,滿(mǎn)足條件.
y=-x2+2是偶函數(shù),則(0,+∞)上單調(diào)遞減,不滿(mǎn)足條件.
$y={({\frac{1}{2}})^{|x|}}$是偶函數(shù),則(0,+∞)上單調(diào)遞減,不滿(mǎn)足條件.
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見(jiàn)函數(shù)的單調(diào)性和奇偶性的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb(a>0,b>0).
(I)設(shè)h(x)=f(x)+g(x),求h(x)的單調(diào)區(qū)間;
(II)若存在x0,使x0∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$]且f(x0)≤g(x0)成立,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過(guò)正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對(duì)于函數(shù)f(x)有以下三個(gè)結(jié)論:
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$;
②任意x∈[0,$\frac{π}{2}$],都有f($\frac{π}{2}$-x)+f($\frac{π}{2}$+x)=4;
③任意x1,x2∈($\frac{π}{2}$,π),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.
其中所有正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線l1:x-2y+3=0與l2:x-y+1=0的夾角的大小為arctan$\frac{1}{3}$.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若$\vec a$,$\vec b$是兩個(gè)非零的平面向量,則“$|{\vec a}|=|{\vec b}|$”是“$({\vec a+\vec b})•({\vec a-\vec b})=0$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,滿(mǎn)足f(xy)=f(x)f(y)的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若α∈(0,$\frac{π}{2}$),且cos2α+cos($\frac{π}{2}$+2α)=$\frac{3}{10}$,則tanα(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知x,y∈R,且x2+y2≤1,求|x+y|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)等差數(shù)列{an}的前n項(xiàng)和為An,等比數(shù)列{bn}的前n項(xiàng)和為Bn,若a3=b3,a4=b4,且$\frac{{A}_{5}-{A}_{3}}{{B}_{4}-{B}_{2}}$=7,則$\frac{{a}_{5}+{a}_{3}}{_{5}+_{3}}$=-$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案