【題目】某校開展學(xué)生社會(huì)法治服務(wù)項(xiàng)目,共設(shè)置了文明交通,社區(qū)服務(wù),環(huán)保宣傳和中國傳統(tǒng)文化宣講四個(gè)項(xiàng)目,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生,每名學(xué)生必須且只能選擇1項(xiàng).
(1)求恰有2個(gè)項(xiàng)目沒有被這4名學(xué)生選擇的概率;
(2)求“環(huán)保宣傳”被這4名學(xué)生選擇的人數(shù)
的分布列及其數(shù)學(xué)期望.
【答案】(1)
;(2)
的分布列如下表:
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
的數(shù)學(xué)期望為:
.
【解析】
(1)先計(jì)算出基本事件的個(gè)數(shù),再計(jì)算出恰有2個(gè)項(xiàng)目沒有被這4名學(xué)生選擇的基本事件的個(gè)數(shù),最后利用古典概型的計(jì)算公式進(jìn)行求解即可;
(2)根據(jù)題意可知:
的可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,最后列出分布列計(jì)算數(shù)學(xué)期望即可.
(1)甲、乙、丙、丁4名學(xué)生,每名學(xué)生必須且只能選擇1項(xiàng),則基本事件的個(gè)數(shù)為:
,2個(gè)項(xiàng)目沒有被這4名學(xué)生選擇所含的基本事件的個(gè)數(shù)為:
,因此恰有2個(gè)項(xiàng)目沒有被這4名學(xué)生選擇的概率為:
;
(2)根據(jù)題意可知:
的可能取值為0,1,2,3,4,
;
;
;
;
,
所以“環(huán)保宣傳”被這4名學(xué)生選擇的人數(shù)
的分布列如下表:
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
所以
的數(shù)學(xué)期望為:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個(gè)地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù),繪制成如圖折線圖:
![]()
(1)根據(jù)圖中甲、乙兩個(gè)地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)新冠病毒在進(jìn)入人體后有一段時(shí)間的潛伏期,此期間為病毒傳播的最佳時(shí)期,我們把與病毒感染者有過密切接觸的人群稱為密切接觸者,假設(shè)每位密切接觸者不再接觸其他病毒感染者,10天內(nèi)所有人不知情且生活照常.
(i)在不加任何防護(hù)措施的前提下,假設(shè)每位密切接觸者被感染的概率均為
.第一天,若某位感染者產(chǎn)生
名密切接觸者則第二天新增感染者平均人數(shù)為ap;第二天,若每位感染者都產(chǎn)生a名密切接觸者,則第三天新增感染者平均人數(shù)為
;以此類推,記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為
.寫出
,
;
(ii)在(i)的條件下,若所有人都配戴口罩后,假設(shè)每位密切接觸者被感染的概率均為
,且滿足關(guān)系
,此時(shí),記由一名感染者引發(fā)的病毒傳播的第n天新增感染者平均人數(shù)為
.當(dāng)
最大,且
時(shí),根據(jù)
和
的值說明戴口罩的必要性.(
精確到
)
參考公式:函數(shù)
的導(dǎo)函數(shù)
;
參考數(shù)據(jù):
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,拋物線
的焦點(diǎn)為
,
(其中
)是
上的一點(diǎn),且
.
(1)求拋物線
的方程;
(2)已知
為拋物線
上除頂點(diǎn)
之外的任意一點(diǎn),在點(diǎn)
處的切線與
軸交于點(diǎn)
,過
點(diǎn)的直線
交拋物線于
,
兩點(diǎn),設(shè)
,
,
的斜率分別為
,
,
,求證:
,
,
成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性.
(2)若函數(shù)
有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
為正三角形,
,
,
,點(diǎn)
在線段
的中點(diǎn),點(diǎn)
為線段
的中點(diǎn).
![]()
(1)在線段
上是否存在點(diǎn)
,使得
平面
?若存在,指出點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從中國教育在線官方公布的考研動(dòng)機(jī)調(diào)查來看,本科生扎堆考研的原因大概集中在這6個(gè)方面:本科就業(yè)壓力大,提升競(jìng)爭(zhēng)力;通過考研選擇真正感興趣的專業(yè);為了獲得學(xué)歷;繼續(xù)深造;隨大流;有名校情結(jié).如圖是2015~2019年全國碩士研究生報(bào)考人數(shù)趨勢(shì)圖(單位:萬人)的折線圖.
![]()
(1)求
關(guān)于
的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,預(yù)測(cè)2021年全國碩士研究生報(bào)考人數(shù).
參考數(shù)據(jù):
.
回歸方程
中斜率和截距的最小二乘估計(jì)公式分別:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,若曲線
與曲線
關(guān)于直線
對(duì)稱.
(1)求曲線
的直角坐標(biāo)方程;
(2)在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
的異于極點(diǎn)的交點(diǎn)為
,與
的異于極點(diǎn)的交點(diǎn)為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1⊥A1C1,D是B1C1的中點(diǎn),A1A=A1B1=2.
![]()
(1)求證:AB1∥平面A1CD;
(2)若異面直線AB1和BC所成角為60°,求四棱錐A1﹣CDB1B的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com