欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知函數(shù)y=f(x)是定義域?yàn)镈,且f(x)同時(shí)滿足以下條件:
①f(x)在D上是單調(diào)函數(shù);
②存在閉區(qū)間[a,b]?D(其中a<b),使得當(dāng)x∈[a,b]時(shí),f(x)的取值集合也是[a,b].則稱函數(shù)y=f(x)(x∈D)是“合一函數(shù)”.
(1)請(qǐng)你寫出一個(gè)“合一函數(shù)”;
(2)若f(x)=$\sqrt{x+1}$+m是“合一函數(shù)”,求實(shí)數(shù)m的取值范圍.
(注:本題求解中涉及的函數(shù)單調(diào)性不用證明,直接指出是增函數(shù)還是減函數(shù)即可)

分析 (1)根據(jù)新定義,寫出一個(gè)“合一函數(shù)”即可(答案不唯一);
(2)根據(jù)f(x)的單調(diào)性以及f(x)是“合一函數(shù)”,得出$\left\{\begin{array}{l}{f(a)=a}\\{f(b)=b}\end{array}\right.$,利用方程與函數(shù)的關(guān)系,求出實(shí)數(shù)m的取值范圍.

解答 解:(1)根據(jù)題意,寫出一個(gè)“合一函數(shù)”,如y=x,x∈[0,1];
(或y=-x,x∈[-1,1]或y=x3,x∈[-1,1]或y=-x3或x∈[-1,1],答案不唯一);
(2)f(x)=$\sqrt{x+1}$+m是在[-1,+∞)的增函數(shù),
由題意知,f(x)是“合一函數(shù)”時(shí),存在區(qū)間[a,b],
滿足$\left\{\begin{array}{l}{f(a)=a}\\{f(b)=b}\end{array}\right.$,
即$\left\{\begin{array}{l}{\sqrt{a+1}+m=a}\\{\sqrt{b+1}+m=b}\end{array}\right.$;
即a、b是方程$\sqrt{x+1}$+m=x的兩個(gè)根,
化簡(jiǎn)得a,b是方程x2-(2m+1)x+m2-1=0的兩個(gè)根,
且$\left\{\begin{array}{l}{a≥m}\\{b>m}\end{array}\right.$;
令g(x)=x2-(2m+1)x+m2-1,
得$\left\{\begin{array}{l}{△>0}\\{g(m)≥0}\\{\frac{2m+1}{2}>m}\end{array}\right.$,
解得-$\frac{5}{4}$<m≤-1,
所以實(shí)數(shù)m的取值范圍是(-$\frac{5}{4}$,-1].

點(diǎn)評(píng) 本題考查了新定義的函數(shù)與方程的應(yīng)用問(wèn)題,也考查了構(gòu)造函數(shù)的解題方法,轉(zhuǎn)化為方程的根與函數(shù)圖象與x軸交點(diǎn)的問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)計(jì)算:${(2\frac{1}{4})^{\frac{1}{2}}}+(lg7{)^0}+{(\frac{8}{125})^{-\frac{1}{3}}}$;
(2)解方程:${log_2}({3^x}-49)=5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到定點(diǎn)A的距離小于1的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(Ⅰ)計(jì)算:1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(\frac{2}{3})^{\frac{2}{3}}}$的值.
(Ⅱ)計(jì)算:lg22•lg250+lg25•lg40的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知四邊形ABCD是菱形,點(diǎn)P在對(duì)角線AC上(不包括端點(diǎn)A、C),則$\overrightarrow{AP}$=(  )
A.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,1)B.λ($\overrightarrow{AB}$+$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)C.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,1)D.λ($\overrightarrow{AB}$-$\overrightarrow{BC}$) λ∈(0,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各組函數(shù)中,f(x)與g(x)表示同一個(gè)函數(shù)的是( 。
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=x,g(x)=\root{3}{x^3}$
C.f(x)=x,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.有下列五個(gè)命題:
①函數(shù)f(x)=$\frac{|x|}{|x-2|}$是偶函數(shù);
②函數(shù)y=$\sqrt{x-1}$的值域?yàn)閧y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,則a的取值集合為$\left\{{-1,\frac{1}{3}}\right\}$
④關(guān)于x的一元二次方程x2+mx+2m+1=0的一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m 的取值范圍是$\left\{{m|m<-\frac{2}{3}}\right\}$;
⑤若f(x)的定義域?yàn)镽,且在(-∞,+∞)上是增函數(shù),a∈R,且a≠$\frac{1}{2}$,則$f(\frac{3}{4})$與f(a2-a+1)的大小關(guān)系是$f(\frac{3}{4})<f({a^2}-a+1)$.
你認(rèn)為正確命題的序號(hào)為:②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|(x+3)(6-x)≤0},B={x|log2(x+2)<4}.
(1)求A∩∁RB;
(2)已知C={x|2a<x<a+1}(a∈R),若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直線AC的斜率等于直線BC的斜率的3倍,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案