| A. | $\frac{3-4\sqrt{3}}{10}$ | B. | $\frac{-3+4\sqrt{3}}{10}$ | C. | $\frac{-4+3\sqrt{3}}{10}$ | D. | $\frac{4-3\sqrt{3}}{10}$ |
分析 由條件求得cos(α-$\frac{π}{4}$)的值,可得cos$\frac{7π}{12}$ 和sin$\frac{7π}{12}$ 的值,再根據(jù)sin(α+$\frac{π}{3}$)=sin[(α-$\frac{π}{4}$)+$\frac{7π}{12}$],利用兩角的正弦公式,計算求的結(jié)果.
解答 解:∵cos2α=sin($\frac{π}{2}$-2α)=2sin($\frac{π}{4}$-α)cos($\frac{π}{4}$-α)=-2sin(α-$\frac{π}{4}$)cos(α-$\frac{π}{4}$)=$\frac{7}{25}$,
又 sin(α-$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,
∴cos(α-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$.
∵cos$\frac{7π}{12}$=cos($\frac{π}{4}$+$\frac{π}{3}$)=cos$\frac{π}{4}$cos$\frac{π}{3}$-sin$\frac{π}{4}$sin$\frac{π}{3}$=$\frac{\sqrt{2}-\sqrt{6}}{4}$,
sin$\frac{7π}{12}$=sin($\frac{π}{4}$+$\frac{π}{3}$)=sin$\frac{π}{4}$cos$\frac{π}{3}$+cos$\frac{π}{4}$sin$\frac{π}{3}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴sin(α+$\frac{π}{3}$)=sin[(α-$\frac{π}{4}$)+$\frac{7π}{12}$]=sin(α-$\frac{π}{4}$)cos$\frac{7π}{12}$+cos(α-$\frac{π}{4}$)sin$\frac{7π}{12}$
=$\frac{7\sqrt{2}}{10}•\frac{\sqrt{2}-\sqrt{6}}{4}$+(-$\frac{\sqrt{2}}{10}$•$\frac{\sqrt{2}+\sqrt{6}}{4}$)=$\frac{3-4\sqrt{3}}{10}$,
故選:A.
點評 本題主要考查誘導(dǎo)公式,兩角差的正弦、余弦公式,角的變換是解題的難點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,2) | B. | (-∞,1)∪(2,+∞) | C. | (-2,-1) | D. | (-∞,-2)∪(-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {(1,0)} | B. | {(-1,1)} | C. | {(2,0)} | D. | {(2,1)} |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com