欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】如圖,由直三棱柱和四棱錐構成的幾何體中,,平面平面.

1)求證:;

2)在線段上(含端點)是否存在點P,使直線與平面所成的角的正弦值為?若存在,求的值,若不存在,說明理由.

【答案】1)證明見解析;(2)存在;.

【解析】

1)根據(jù)題意可知,然后根據(jù)面面垂直的性質定理可知平面,進一步可得結果.

2)建立空間直角坐標系,假設計算平面的一個法向量,以及,然后根據(jù),計算可得.

1)證明:直三棱柱中,

平面平面,平面平面

所以平面,

因為平面,所以.

2)假設線段上(含端點)存在點P,

使直線與平面所成的角的正弦值為

A為原點,x軸,y軸,z軸,

建立空間直角坐標系,如圖

,

,,

所以,

設平面的法向量,

,得,

因為直線與平面所成的角正弦值為,

設直線與平面所成的角為,

所以,

解得,或(舍)

所以在線段上(含端點)存在點P,

使直線與平面所成的角正弦值為,

解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),)的部分圖象如圖所示,則下列結論正確的是(

A.

B.若把函數(shù)的圖像向左平移個單位,則所得函數(shù)是奇函數(shù)

C.若把的橫坐標縮短為原來的倍,縱坐標不變,得到的函數(shù)在上是增函數(shù)

D.,若恒成立,則的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“支付寶捐步”已經成為當下最熱門的健身方式,為了了解是否使用支付寶捐步與年齡有關,研究人員隨機抽取了5000名使用支付寶的人員進行調查,所得情況如下表所示:

50歲以上

50歲以下

使用支付寶捐步

1000

1000

不使用支付寶捐步

2500

500

(1)由上表數(shù)據(jù),能否有99.9%的把握認為是否使用支付寶捐步與年齡有關?

(2)55歲的老王在了解了捐步功能以后開啟了自己的捐步計劃,可知其在捐步的前5天,捐步的步數(shù)與天數(shù)呈線性相關.

第x天

第1天

第2天

第3天

第4天

第5天

步數(shù)

4000

4200

4300

5000

5500

(i)根據(jù)上表數(shù)據(jù),建立關于的線性回歸方程;

(ii)記由(i)中回歸方程得到的預測步數(shù)為,若從5天中任取3天,記的天數(shù)為X,求X的分布列以及數(shù)學期望.

附參考公式與數(shù)據(jù):,;K2=

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面上一動點A的坐標為.

1)求點A的軌跡E的方程;

2)點B在軌跡E上,且縱坐標為.

i)證明直線AB過定點,并求出定點坐標;

ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點為H,在平面內是否存在定點P,使得為定值?若存在,求出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形ABCD中,ADBCABBC,BDDC,點EBC的中點.將△ABD沿BD折起,使ABAC,連接AE,AC,DE,得到三棱錐ABCD.

1)求證:平面ABD⊥平面BCD

2)若AD=1,二面角CABD的余弦值為,求二面角BADE的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,且取相等的單位長度,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),設點

()將曲線的極坐標方程化為直角坐標方程,將直線的參數(shù)方程化為普通方程;

()設直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點的坐標為.

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,且以線段為直徑的圓過橢圓的右頂點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上任意一點,過點軸于點,延長到點,使.

1)求點M的軌跡E的方程;

2)過點作圓O的切線l,交(1)中曲線E兩點,求面積的最大值.

查看答案和解析>>

同步練習冊答案