欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
15.設集合A={x||x-2|≥1},集合B={x|$\frac{1}{x}$<1},則A∩B=(-∞,0)∪[3,+∞).

分析 由絕對值不等式的解法求出集合A,由分式不等式的解法求出集合B,由交集的運算求出A∩B.

解答 解:由|x-2|≥1得x-2≥1或x-2≤-1,
解得x≥3或x≤1,則集合A=(-∞,1]∪[3,+∞),
由$\frac{1}{x}<1$ 得$\frac{1-x}{x}<0$,則x(1-x)<0,即x(x-1)>0,
解得x>1或x<0,則集合B=(-∞,0)∪(1,+∞),
所以A∩B=(-∞,0)∪[3,+∞),
故答案為:(-∞,0)∪[3,+∞).

點評 本題考查了交集及其運算,以及絕對值、分式不等式的解法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.已知數列{an}滿足an+2-2an+1+an=0(n∈N*),a2=4,其前7項和為42,設數列{bn}是等比數列,數列{bn}的前n項和為Sn滿足b1=a1-1,S30-(310+1)S20+310S10=0.
(1)求數列{an},{bn}的通項公式;
(2)令cn=1+log3$\frac{_{n}}{2}$,dn=$\frac{{a}_{n}}{{c}_{n}}$+$\frac{{c}_{n}}{{a}_{n}}$,求證:數列{dn}的前n項和Tn≥$\frac{10}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.2016年10月28日,經歷了近半個世紀風雨的南京長江大橋真“累”了,終于停下來喘口氣了,之前大橋在改善我們城市的交通狀況方面功不可沒.據相關數據統計,一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數.當橋上的車流密度達到280輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為50千米/小時.研究表明,當30≤x≤280時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤280時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時) f(x)=x•v(x)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知函數y=f(x+2)的定義域為(0,2),則函數y=f(log2x)的定義域為( 。
A.(-∞,1)B.(1,4)C.(4,16)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.設函數f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定義域為R的奇函數.
(1)求k的值
(2)已知f(1)=$\frac{15}{4}$,函數g(x)=a2x+a-2x-2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)問的條件下,試問是否存在正整數λ,使得f(2x)≥λ•f(x)對任意x∈[-$\frac{1}{2}$,$\frac{1}{2}$]恒成立?若存在,請求出所有的正整數λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=$\frac{{x}^{2}-4x+3+a}{x-1}$,其中a為常數;
(1)當a=2時,解不等式f(x)≥1;
(2)當a<0時,求函數f(x)在x∈(1,3]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知點A(m,-3)在拋物線y2=2px(p>0)上,它到拋物線焦點F的距離為5,求m和p的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.函數f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}$-2ax+2a+1圖象經過四個象限的必要而不充分條件是( 。
A.-$\frac{4}{3}$<x<-$\frac{1}{3}$B.-2<a<0C.-$\frac{6}{5}$<a<-$\frac{3}{16}$D.-1<a<-$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知f(x)=ax2+x-a.a∈R
(1)若不等式f(x)<b的解集為(-∞,-1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

同步練習冊答案