【題目】已知點
、
是雙曲線
:
的左右焦點,其漸近線為
,且右頂點到左焦點的距離為3.
(1)求雙曲線
的方程;
(2)過
的直線
與
相交于
、
兩點,直線
的法向量為
,且
,求
的值;
(3)在(2)的條件下,若雙曲線
在第四象限的部分存在一點
滿足
,求
的值及
的面積
.
【答案】(1)
(2)
(3)
,![]()
【解析】
(1)由漸近線為
,可知
,由右頂點到左焦點的距離為3,可知
,再根據(jù)
,求解
,
,
即可.
(2)由題意可知,直線
的方程為
,將直線
的方程與雙曲線
的方程聯(lián)立,得
,根據(jù)韋達定理,確定
,
,再由
,得
,求解
的值,即可.
(3)有(2)可知
,從而確定
,設(shè)
,由
得
,代入雙曲線
的方程,解得
值以及點
坐標,利用點到直線距離公式,求解點
到直線
的距離.再求解
的面積即可.
解:(1)由題意得
解得
,
,![]()
所以雙曲線
的方程為:
.
(2)直線
的方程為
,由
,得
(*)
所以![]()
由
得![]()
即![]()
代入化簡,并解得
(舍去負值)
(3)把
代入(*)并化簡得
,
此時
,
所以![]()
設(shè)
,由
得
代入雙曲線
的方程解得
(舍),
,所以
,
點
到直線
的距離為
,
所以
.
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系
中,曲線
的參數(shù)方程為
,其中
為參數(shù),在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,點
的極坐標為
,直線
的極坐標方程為
.
(1)求直線
的直角坐標方程與曲線
的普通方程;
(2)若
是曲線
上的動點,
為線段
的中點.求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本與塔載 | 20 | 30 | 計劃最大資 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載 |
預(yù)計收益(萬元/件) | 80 | 60 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間和極值;
(2)若不等式
在區(qū)間
上恒成立,求實數(shù)
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形由4個全等的直角三角形再加上中間的一個小正方形組成的),類比“趙爽弦圖”,可類似地構(gòu)造如圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè)
,則( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC
,PC
,PA
,PB
,E是線段BC的中點.
![]()
(1)求點C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當
時,判斷函數(shù)
的單調(diào)性;
(Ⅱ)當
時,證明:
.(
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系
有相同的長度單位,曲線
的極坐標方程為
.
(1)求直線
的普通方程和曲線
的直角坐標方程;
(2)設(shè)曲線
與直線
交于
、
兩點,且
點的坐標為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0)的焦點為F,點M是直線y=x與拋物線E在第一象限內(nèi)的交點,且|MF|=5.
(1)求拋物E的方程.
(2)直線l與拋物線E相交于兩點A,B,過點A,B分別作AA1⊥x軸于A1,BB1⊥x軸于B1,原點O到直線l的距離為1.求
的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com