欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.橢圓的一個焦點將長軸分成8和2兩部分,求橢圓的標準方程和離心率.

分析 設橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1或$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),由題意可得a+c=8,a-c=2,解方程可得a,c,b,由離心率公式即可得到所求值.

解答 解:設橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1或$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),
由題意可得a+c=8,a-c=2,
解得a=5,c=3,b=$\sqrt{{a}^{2}-{c}^{2}}$=4,
即有e=$\frac{c}{a}$=$\frac{3}{5}$,
橢圓的方程為$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1或$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1.

點評 本題考查橢圓的方程和性質(zhì),考查橢圓a,b,c,e的求法,以及運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知:x1,x2是實系數(shù)一元二次方程x2-mx+3=0的兩個根.求:|x1|+|x2|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,則這個多面體最長的一條棱的長為( 。
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F與拋物線y2=4$\sqrt{3}$x的焦點重合,短軸的下、上兩個端點分別為B1,B2,且$\overrightarrow{F{B}_{1}}$$•\overrightarrow{F{B}_{2}}$=a.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(km<0)與橢圓C交于M,N兩點,AB是橢圓C經(jīng)過原點O的弦,AB∥l,且$\frac{|AB{|}^{2}}{|MN|}$=4,問是否存在直線l,使得$\overrightarrow{OM}$$•\overrightarrow{ON}$=2?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖1,已知ABCD是上、下底邊長分別為2和6的等腰梯形.將它沿對稱軸OO1折成直二面角,如圖2,滿足AC⊥BO1
(1)求線段OO1的長度;
(2)求二面角O-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求函數(shù)f(x)=-2cosx-x在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設F是橢圓E:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$的左焦點,過點F且傾斜角為150°的直線l交橢圓E于M,N兩點,連接MO(O為坐標原點)并延長交橢圓于P,則△MNP面積為( 。
A.$\frac{5}{2}$B.5C.$\frac{15}{2}$D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在底面為矩形的四棱錐D-ABCE中,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,二面角D-AE-C的平面角的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.橢圓Γ:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的焦點分別為F1(0,-c),F(xiàn)2(0,c),過點F1斜率為1的直線l與橢圓Γ交于M、N兩點,且2sin∠MF2N=sin∠F2MN+sin∠F2NM.
(1)求橢圓離心率;
(2)設點P(0,-1)在線段MN的垂直平分線上,求橢圓Γ的方程.

查看答案和解析>>

同步練習冊答案