| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
| 2 |
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省、岳陽(yáng)縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)(第一問(wèn)8分,第二問(wèn)5分)
已知函數(shù)f(x)=2lnx,g(x)=
ax2+3x.
(1)設(shè)直線(xiàn)x=1與曲線(xiàn)y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線(xiàn)y=f(x)和y=g(x)在點(diǎn)P、Q處的切線(xiàn)平行,若方程
f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿(mǎn)足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問(wèn)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆湖南省澧縣一中、岳陽(yáng)縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分13分)(第一問(wèn)8分,第二問(wèn)5分)
已知函數(shù)f(x)=2lnx,g(x)=
ax2+3x.
(1)設(shè)直線(xiàn)x=1與曲線(xiàn)y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線(xiàn)y=f(x)和y=g(x)在點(diǎn)P、Q處的切線(xiàn)平行,若方程
f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿(mǎn)足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問(wèn)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市五市三區(qū)高三(上)期中數(shù)學(xué)模擬試卷(一)(解析版) 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com