欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

是正數(shù)等差數(shù)列,是正數(shù)等比數(shù)列,且a1=b1a2n+1=b2n+1,則

     A.an+1=bn+1        B.an+1bn+1       C.an+1bn+1                 D.an+1bn+1

 

【答案】

D

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是各項(xiàng)均為正數(shù)的無窮項(xiàng)等差數(shù)列.(本題中必要時(shí)可使用公式:12+22+33+…+n2=
n(n+1)(2n+1)
6

(Ⅰ)記Sn=a1+a2+…+an,Tn=a12+a22+…+an2,已知Snn2+n-1,Tn
4n3-n
3
(n∈N*),試求此等差數(shù)列的首項(xiàng)a1及公差d;
(Ⅱ)若{an}的首項(xiàng)a1及公差d都是正整數(shù),問在數(shù)列{an}中是否包含一個(gè)非常數(shù)列的無窮項(xiàng)等比數(shù)列{a′m}?若存在,請(qǐng)寫出{a′m}的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差是d,Sn是該數(shù)列的前n項(xiàng)和、
(1)試用d,Sm,Sn表示Sm+n,其中m,n均為正整數(shù);
(2)利用(1)的結(jié)論求解:“已知Sm=Sn(m≠n),求Sm+n”;
(3)若各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項(xiàng)和為Sn,試類比問題(1)的結(jié)論,寫出一個(gè)相應(yīng)的結(jié)論且給出證明,并利用此結(jié)論求解問題:“已知各項(xiàng)均為正數(shù)的等比數(shù)列{bn},其中S10=5,S20=15,求數(shù)列{bn}的前50項(xiàng)和S50.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宿遷一模)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{an2}的前n項(xiàng)和為Tn,且(Sn-2)2+3Tn=4,n∈N*
(1)證明數(shù)列{an}是等比數(shù)列,并寫出通項(xiàng)公式;
(2)若Sn2Tn<0對(duì)n∈N*恒成立,求λ的最小值;
(3)若an,2xan+1,2yan+2成等差數(shù)列,求正整數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項(xiàng)公式;
(2)設(shè)g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個(gè)數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項(xiàng)和為Sn,是否存在正數(shù)λ,對(duì)任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案