欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知函數(shù)f(x)=|x+1|+2|x-1|-a
(1)若a=1,求不等式f(x)>x+2的解集
(2)若不等式f(x)≤a(x+2)的解集為非空集合,求a的取值范圍.

分析 (1)把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(2)由題意可得|x+1|+2|x-1|≤a(x+3)能成立.設(shè)g(x)=|x+1|+2|x-1|,由題意可得f(x)的圖象有一部分位于直線線y=a(x+3)的下方.求得PA、BC的斜率,數(shù)形結(jié)合求得a的范圍.

解答 解:(1)當(dāng)a=1時(shí),f(x)=|x+1|+2|x-1|-1,不等式f(x)>x+2,即|x+1|+2|x-1|>x+3.
∴$\left\{\begin{array}{l}{x<-1}\\{1-3x>x+3}\end{array}\right.$①或$\left\{\begin{array}{l}{-1≤x<1}\\{3-x>x+3}\end{array}\right.$②或$\left\{\begin{array}{l}{x≥1}\\{3x-1>x+3}\end{array}\right.$③.
解①求得x<-1,解②求得-1≤x<0,解③求得x>2,
綜上可得,原不等式的解集為{x|x<0,或x>2}.
(2)由題意可得f(x)≤a(x+2)有解,化簡(jiǎn)f(x)≤a(x+2)可得|x+1|+2|x-1|≤a(x+3).
設(shè)g(x)=|x+1|+2|x-1|=$\left\{\begin{array}{l}{1-3x,x<-1}\\{3-x,-1≤x<1}\\{3x-1,x≥1}\end{array}\right.$,由于直線y=a(x+3)經(jīng)過(guò)定點(diǎn)P(-3,0),如圖:
由題意可得f(x)的圖象有一部分位于直線線y=a(x+3)的下方.
由于PA的斜率KPA=$\frac{2-0}{1+3}$=$\frac{1}{2}$,直線BC的斜率 KBC=-3,
故a的范圍為(-∞,-3)∪($\frac{1}{2}$,+∞).

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的能成立問(wèn)題,體現(xiàn)了轉(zhuǎn)化、分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知O是△ABC的外接圓圓心,$|\overrightarrow{AB}|=4$,D是BC中點(diǎn),若$\overrightarrow{AO}•\overrightarrow{AD}=5$,則$|\overrightarrow{AC}|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=2px(p>0)有相同的焦點(diǎn),且雙曲線的一條漸近線與拋物線的準(zhǔn)線交于點(diǎn)$(-5,-\frac{15}{4})$,則雙曲線的離心率為(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=|x-a|+1,a∈R
(1)當(dāng)a=4時(shí),解不等式f(x)<1+|2x+1|;
(2)若f(x)≤2的解集為[0,2],$\frac{1}{m}$+$\frac{1}{n}$=a(m>0,n>0),求證:m+2n≥3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.執(zhí)行如圖的程序框圖,若輸入x=1,則輸出的S=( 。
A.21B.37C.57D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)為a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$,則A=( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$sin(\frac{π}{2}+α)=-\frac{{2\sqrt{2}}}{3},α$是第二象限角,則$tan(a+\frac{π}{4})$=(  )
A.$\frac{{9-4\sqrt{2}}}{7}$B.$\frac{{2-\sqrt{2}}}{7}$C.$\frac{{9+4\sqrt{2}}}{7}$D.$\frac{{2+\sqrt{2}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,若粗線畫(huà)出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某綜藝節(jié)目在某一期節(jié)目中邀請(qǐng)6位明星,其中一個(gè)環(huán)節(jié)需要兩位明星先后參與,已知在該輪游戲中甲、乙兩位明星至多有一人參與,若甲明星參與,必須先進(jìn)行游戲,則甲的可能有幾種?

查看答案和解析>>

同步練習(xí)冊(cè)答案