| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
分析 根據(jù)題意直線AB的方程為y=$\frac{a}$(x-c)代入雙曲線漸近線方程,求出A的坐標(biāo),進(jìn)而求得B的表達(dá)式,代入雙曲線方程整理求得a和c的關(guān)系式,進(jìn)而求得離心率.
解答 解:設(shè)F(c,0),則直線AB的方程為y=$\frac{a}$(x-c)代入雙曲線漸近線方程y=-$\frac{a}$x得A($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
由$\overrightarrow{FB}$=2$\overrightarrow{FA}$,可得B(-$\frac{{c}^{2}+2{a}^{2}}{3c}$,-$\frac{2ab}{3c}$),
把B點(diǎn)坐標(biāo)代入雙曲線方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
即$\frac{({c}^{2}+2{a}^{2})^{2}}{9{c}^{2}{a}^{2}}-\frac{4{a}^{2}}{9{c}^{2}}$=1,整理可得c=$\sqrt{5}$a,
即離心率e=$\frac{c}{a}$=$\sqrt{5}$.
故選:C.
點(diǎn)評 本題主要考查了雙曲線的簡單性質(zhì).解題的關(guān)鍵是通過分析題設(shè)中的信息,找到雙曲線方程中a和c的關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 90 | B. | 45 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相同 | B. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相同 | ||
| C. | x=$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相反 | D. | x=-$\frac{2}{5}$,且$\overrightarrow{AB}$與$\overrightarrow{a}$方向相反 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-2,1) | B. | [-2,1] | C. | (-∞,-2)∪(1,+∞) | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com