分析 (1)由根式有意義可得2sinx+$\sqrt{3}$≥0,即sinx≥-$\frac{\sqrt{3}}{2}$,解三角方程可得;
(2)由對數(shù)有意義可得6$\sqrt{2}$-12sinx>0,即sinx<$\frac{\sqrt{2}}{2}$,解三角方程可得.
解答 解:(1)由根式有意義可得2sinx+$\sqrt{3}$≥0,
∴sinx≥-$\frac{\sqrt{3}}{2}$,解得2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{4π}{3}$,
∴函數(shù)的定義域為[2kπ-$\frac{π}{3}$,2kπ+$\frac{4π}{3}$],k∈Z;
(2)由對數(shù)有意義可得6$\sqrt{2}$-12sinx>0,
∴sinx<$\frac{\sqrt{2}}{2}$,解得2kπ+$\frac{3π}{4}$<x<2kπ+$\frac{9π}{4}$,
∴函數(shù)的定義域為(2kπ+$\frac{3π}{4}$,2kπ+$\frac{9π}{4}$),k∈Z.
點評 本題考查函數(shù)的定義域,涉及三角函數(shù)的圖象和性質(zhì),屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | $\frac{\sqrt{6}+\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | k=2 | B. | k=3 | C. | .k=$\frac{1}{3}$或3 | D. | k=2或$\frac{1}{2}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com