欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=-{t}^{2}}\end{array}\right.$,直線l的極坐標方程為4ρcosθ+3ρsinθ=8,則曲線C上的點到直線l的距離的最小值是$\frac{4}{3}$.

分析 求出直線l的直角坐標方程,使用參數(shù)方程得出點到直線的距離為關于參數(shù)t的函數(shù),求出此距離函數(shù)的最小值.

解答 解:直線l的直角坐標方程為4x+3y-8=0.
∴曲線C上的點到直線l的距離d=$\frac{|4t-3{t}^{2}-8|}{5}$=$\frac{|3{t}^{2}-4t+8|}{5}$=$\frac{|3(t-\frac{2}{3})^{2}+\frac{20}{3}|}{5}$.
∴當t=$\frac{2}{3}$時,d取得最小值$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點評 本題考查了極坐標方程與直角坐標方程的轉化,點到直線的距離的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.若$f(x)={log_2}({x^2}+2)\;\;(x≤0)$,則它的反函數(shù)是f-1(x)=$-\sqrt{{2^x}-2}\;\;(\;x≥1\;)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知實數(shù)a、b常數(shù),若函數(shù)y=$\frac{a|x-1|}{x+2}$+be2x+1的圖象在切點(0,$\frac{1}{2}$)處的切線方程為3x+4y-2=0,y=$\frac{a|x-1|}{x+2}$+be2x+1與y=k(x-1)3的圖象有三個公共點,則實數(shù)k的取值范圍是(-∞,-$\frac{1}{4}$)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{x+1}$.數(shù)列{an}滿足:an>0,a1=1,且$\sqrt{{a}_{n+1}}$=f($\sqrt{{a}_{n}}$),求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足:an+2=4an+1-4an,且a1=1,a2=6.
(1)設bn=an+1-2an,求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,且向量$\overrightarrow{m}$=(5a-4c,4b)與向量$\overrightarrow{n}$=(cosC,cosB)共線
(Ⅰ)求cosB;
(Ⅱ)若b=$\sqrt{10}$,c=5,a<c,且$\overrightarrow{AD}$=2$\overrightarrow{DC}$,求BD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在等差數(shù)列{an}中,前n項和為Sn,a6=12,S4=20.
(1)求Sn
(2)是否存在等比數(shù)列{bn}滿足b1=a1,b2=a3,b3=a9.若存在,求出數(shù)列{bn}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos2x,求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,在三棱柱ABC-A1B1C1中,C1C⊥平面ABC,∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習冊答案