欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

三棱錐P-ABC中,側面PAC與底面ABC垂直,PA=BP=PC=3,

1)求證:ABBC;

  
     

 

     
 
2)設AB=BC=,求AC與平面PBC所成角的大小.

 

 

答案:
解析:

(Ⅰ)證明:如圖1,取AC中點D,連結PD、BD.

    因為PA=PC,所以PDAC,又已知面PAC⊥面ABC

所以PD⊥面ABCD為垂足.

因為PA=PB=PC,所以DA=DB=DC

可知AC為△ABC的外接圓直徑,因此ABBC.

(Ⅱ)解:如圖2,作CFPBF,連結AF、DF.

因為△PBC≌△PBA,所以AFPB,AF=CF.

因此,PB⊥平面AFC

所以面AFC⊥面PBC,交線是CF,

因此直線AC在平面PBC內的射影為直線CF,

ACFAC與平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,  所以∠ACF=30°.

AC與平面PBC所成角為30°.

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
(1)證明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,點D、E、F分別為BC、AB、AC的中點.
(I)求證:EF⊥平面PAD;
(II)求點A到平面PEF的距離;
(III)求二面角E-PF-A的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(Ⅰ)當k=
12
時,求直線PA與平面PBC所成角的大。
(Ⅱ)當k取何值時,O在平面PBC內的射影恰好為△PBC的重心?

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D、E、F分別是BC,PB,CA的中點.
(1)證明平面PBF⊥平面PAC;
(2)判斷AE是否平行于平面PFD,并說明理由;
(3)若PC=AB=2,求三棱錐P-DEF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥側面PBC,則此棱錐截面與底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步練習冊答案