分析 求得雙曲線的a,b,c,運(yùn)用雙曲線的定義,結(jié)合條件可得|PF1|=8,|PF2|=6.可得△PF1F2為直角三角形,設(shè)內(nèi)切圓的半徑為r,運(yùn)用面積相等,解方程可得r=2,即可得到所求面積.
解答 解:雙曲線$C:{x^2}-\frac{y^2}{24}=1$的a=1,b=2$\sqrt{6}$,
c=$\sqrt{{a}^{2}+^{2}}$=5,
由雙曲線的定義可得|PF1|-|PF2|=2a=2,
又$\frac{{|P{F_1}|}}{{|P{F_2}|}}=\frac{4}{3}$,
解得|PF1|=8,|PF2|=6.
|F1F2|=2c=10,
即有82+62=102,
可得△PF1F2為直角三角形,
設(shè)內(nèi)切圓的半徑為r,可得
$\frac{1}{2}$r(|PF1|+|PF2|+|F1F2|)=$\frac{1}{2}$|PF1|•|PF2|,
即有r(8+6+10)=8×6,
解得r=2,
可得內(nèi)切圓的面積為4π.
故答案為:4π.
點(diǎn)評(píng) 本題考查三角形的內(nèi)切圓的面積,注意運(yùn)用等積法,判斷△PF1F2為直角三角形是解題的關(guān)鍵,同時(shí)考查雙曲線的定義,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -18 | B. | -4 | C. | 4 | D. | -2$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{7}{6}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com