【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為
元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
| 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
| 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
| 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
| 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
| 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
| 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了80輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 |
|
|
|
|
| |
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:
(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,
.某同學(xué)家里有一輛該品牌車(chē)且車(chē)齡剛滿三年,記X為該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損4000元,一輛非事故車(chē)盈利8000元:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.
【答案】(1)見(jiàn)解析;(2)
,50萬(wàn)元.
【解析】試題分析:
(1)根據(jù)題意得到X的所有取值,然后利用統(tǒng)計(jì)數(shù)據(jù)求得每個(gè)X值的概率,從而可得分布列和期望.(2)①由題意得到任意一輛該品牌車(chē)齡已滿三年的二手車(chē)為事故車(chē)的概率為
,然后根據(jù)獨(dú)立重復(fù)事件的概率可得所求;②設(shè)
為該銷(xiāo)售商購(gòu)進(jìn)并銷(xiāo)售一輛二手車(chē)的利潤(rùn),根據(jù)題意求得
的可能取值和對(duì)應(yīng)的概率后,可得
分分布列和期望
,最后可得購(gòu)進(jìn)100輛車(chē)獲得利潤(rùn)的期望值
.
試題解析:
(1)由題意可知
的可能取值為
.
由統(tǒng)計(jì)數(shù)據(jù)可知:
,
.
所以
的分布列為:
X | 0.9a | 0.8a | 0.7a | a | 1.1a | 1.3a |
P |
|
|
|
|
|
|
∴
.
(2)①由統(tǒng)計(jì)數(shù)據(jù)可知任意一輛該品牌車(chē)齡已滿三年的二手車(chē)為事故車(chē)的概率為
,三輛車(chē)中至多有一輛事故車(chē)的概率為
.
②設(shè)
為該銷(xiāo)售商購(gòu)進(jìn)并銷(xiāo)售一輛二手車(chē)的利潤(rùn),則
的可能取值為-4000,8000.
所以
的分布列為:
| -4000 | 8000 |
|
|
|
∴所以
.
所以該銷(xiāo)售商一次購(gòu)進(jìn)100輛該品牌車(chē)齡已滿三年的二手車(chē)獲得利潤(rùn)的期望為
萬(wàn)元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列
滿足:對(duì)于任意
均為數(shù)列
中的項(xiàng),則稱(chēng)數(shù)列
為“
數(shù)列”.
(1)若數(shù)列
的前
項(xiàng)和
,求證:數(shù)列
為“
數(shù)列”;
(2)若公差為
的等差數(shù)列
為“
數(shù)列”,求
的取值范圍;
(3)若數(shù)列
為“
數(shù)列”,
,且對(duì)于任意
,均有
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,且對(duì)任意的
有
. 當(dāng)
時(shí),
,
.
(1)求
并證明
的奇偶性;
(2)判斷
的單調(diào)性并證明;
(3)求
;若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從一個(gè)面積為
的半圓形鐵皮上截取兩個(gè)高度均為
的矩形,并將截得的兩塊矩形鐵皮分別以
,
為母線卷成兩個(gè)高均為
的圓柱(無(wú)底面,連接部分材料損失忽略不計(jì)).記這兩個(gè)圓柱的體積之和為
.
![]()
(1)將
表示成
的函數(shù)關(guān)系式,并寫(xiě)出
的取值范圍;
(2)求兩個(gè)圓柱體積之和
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
(
為常數(shù))滿足條件
,且方程
有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)
的解析式;
(2)是否存在實(shí)數(shù)
使函數(shù)
的定義域和值域分別為
和
?如果存在,求出
的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形
中,
,
與
交于
點(diǎn),現(xiàn)將
沿
折起得到三棱錐
,
,
分別是
,
的中點(diǎn).
![]()
(1)求證:
;
(2)若三棱錐
的最大體積為
,當(dāng)三棱錐
的體積為
,且
為銳角時(shí),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng).為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)小組中隨機(jī)抽取10名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:
![]()
(1)從參加問(wèn)卷調(diào)查的10名學(xué)生中隨機(jī)抽取兩名,求這兩名學(xué)生來(lái)自同一個(gè)小組的概率;
(2)在參加問(wèn)卷調(diào)查的10名學(xué)生中,從來(lái)自甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取兩名,用
表示抽得甲組學(xué)生的人數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),證明:對(duì)任意的
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com