【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有
,
,
,同時日銷售量m(單位:個)與
成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)
與
的圖象在
上有且只有一個公共點)
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點與橢圓
:
的一個頂點重合,且這個頂點與橢圓
的兩個焦點構(gòu)成的三角形面積為
.
(1)求橢圓
的方程;
(2)若橢圓
的上頂點為
,過
作斜率為
的直線
交橢圓
于另一點
,線段
的中點為
,
為坐標原點,連接
并延長交橢圓于點
,
的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某市高三數(shù)學復習備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學生數(shù)學成績繪制如圖所示的頻率分布直方圖.
![]()
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學的平均成績
;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學成績
近似服從正態(tài)分布
(
,
約為
),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學成績能達到自主招生分數(shù)要求的同學約占
.
(ⅰ)估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學生中隨機抽取
人,記理科數(shù)學成績能達到自主招生分數(shù)要求的人數(shù)為
,求
的分布列及數(shù)學期望
.(說明:
表示
的概率.參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)判斷函數(shù)
的奇偶性;
(2)若對于
時,不等式
恒成立,求實數(shù)
的取值范圍;
(3)若存在
時,使不等式
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于同一個常數(shù).若第一個單音的頻率為f,第三個單音的頻率為
,則第十個單音的頻率為( 。
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組調(diào)查研究學生使用智能手機對學習的影響,部分統(tǒng)計數(shù)據(jù)如表經(jīng)計算
,則下列選項正確的是( )
使用智能手機 | 不使用智能手機 | 合計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
合計 | 20 | 10 | 30 |
附表
| 0.025 | 0.010 | 0.005 | 0.001 |
| 5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.5%的把握認為使用智能手機對學習有影響
B. 有99.5%的把握認為使用智能手機對學習無影響
C. 有99.9%的把握認為使用智能手機對學習有影響
D. 有99.9%的把握認為使用智能手機對學習無影響
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,則下列結(jié)論正確的是__________.(寫出所有正確的編號)①
的最小正周期為
;②
在區(qū)間
上單調(diào)遞增;③
取得最大值的
的集合為
④將
的圖像向左平移
個單位,得到一個奇函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
與燒開一壺水所用時間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
.
(1)根據(jù)散點圖判斷,
與
哪一個更適宜作燒水時間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)
與單位時間內(nèi)煤氣輸出量
成正比,那么
為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在以
為頂點的五面體中,底面
是矩形,
.
![]()
(1)證明:
平面
;
(2)在中國古代數(shù)學經(jīng)典著作《九章算術(shù)》中,稱圖中所示的五面體
為“芻甍”(chúméng),書中將芻甍
的體積求法表述為:
術(shù)曰:倍下袤,上袤從之,以廣乘之,又以高乘之,六而一.其意思是:若芻甍
的“下袤”
的長為
,“上袤”
的長為
,“廣”
的長為
,“高”即“點
到平面
的距離”為
,則芻甍
的體積
的計算公式為:
,證明該體積公式.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com