分析 (1)由AB=AD,AE=AG,∠DAG=∠BAE推出三角形全等;
(2)過(guò)F作BN的垂線,設(shè)垂足為H,證明FH=CH即可.
(3)取AB中點(diǎn)Q,連結(jié)DQ,使用全等三角形得出AG與QD平行且相等,AG與EF平行且相等,故QD與EF平行且相等.
解答
證明:(1)如圖,連接DG,
∵四邊形ABCD和四邊形AEFG是正方形,
∴DA=BA,EA=GA,∠BAD=∠EAG=90°,
∴∠DAG=∠BAE,
∴△ADG≌△ABE;
(2)過(guò)F作BN的垂線,設(shè)垂足為H,
∵∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,
∴∠BAE=∠HEF,
∵AE=EF,
∴△ABE≌△EHF,
∴AB=EH,BE=FH,
∴AB=BC=EH,
∴BE+EC=EC+CH
∴CH=BE=FH,
∴∠FCN=45°;
(3)在AB上取AQ=BE,連接QD,
∵AB=AD,
∴△DAQ≌△ABE,
∵△ABE≌△EHF,
∴△DAQ≌△ABE≌△ADG,
∴∠GAD=∠ADQ,
∴AG、QD平行且相等,
又∵AG、EF平行且相等,
∴QD、EF平行且相等,
∴四邊形DQEF是平行四邊形,
∴在AB邊上存在一點(diǎn)Q,使得四邊形DQEF是,平行四邊形.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),平行四邊形的判定,作出輔助線,找到全等三角形是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要條件 | B. | 充要條件 | ||
| C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. |
| B. |
| C. |
| D. |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{5}}}{4}$ | B. | $\frac{{\sqrt{10}}}{4}$ | C. | $\frac{{\sqrt{15}}}{4}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com