分析 (1)利用已知條件通過Sn+1-Sn=an+1,推出{an}為公差等于2的等差數列,然后求解通項公式.
(2)化簡bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$({\frac{1}{2n-1}-\frac{1}{2n+1}})$,利用裂項消項法求解數列的和,通過數列的單調性推出結果即可.
解答 解:(1)因為(an+1)2=4Sn,所以Sn=$\frac{({a}_{n}+1)^{2}}{4}$,Sn+1=$\frac{({a}_{n+1}+1)^{2}}{4}$.
所以Sn+1-Sn=an+1=$\frac{({a}_{n+1}+1)^{2}-({a}_{n}+1)^{2}}{4}$,
即4an+1=an+12-an2+2an+1-2an,∴2(an+1+an)=(an+1+an)(an+1-an)…(4分)
因為an+1+an≠0,所以an+1-an=2,
即{an}為公差等于2的等差數列.由(a1+1)2=4a1,解得a1=1,所以an=2n-1…(6分)
(2)由(1)知bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴Tn=b1+b2+…+bn=$\frac{1}{2}$$({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})=\frac{1}{2}({1-\frac{1}{2n+1}})$
=$\frac{1}{2}$-$\frac{1}{2(2n+1)}$…(8分)
∵Tn+1-Tn=$\frac{1}{2}$-$\frac{1}{2(2n+3)}$-$({\frac{1}{2}-\frac{1}{2(2n+1)}})$=$\frac{1}{2(2n+1)}$-$\frac{1}{2(2n+3)}$
=$\frac{1}{(2n+1)(2n+3)}$>0,
∴Tn+1>Tn.∴數列{Tn}為遞增數列,…(10分)
∴Tn的最小值為T1=$\frac{1}{2}$-$\frac{1}{6}$=$\frac{1}{3}$.所以$\frac{1}{3}≤{T_n}<\frac{1}{2}$…(12分)
點評 本題考查數列的遞推關系式的應用,數列的判斷,數列求和的方法,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:解答題
| 分 組 | 頻 數 | 頻 率 |
| [50,60) | 2 | 0.04 |
| [60,70) | 8 | 0.16 |
| [70,80) | 10 | 0.2 |
| [80,90) | 16 | 0.32 |
| [90,100] | 14 | 0.28 |
| 合 計 | 50 | 1.00 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com