【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x﹣2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=(
)x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.(1,
)
D.(
,2)
【答案】D
【解析】解:函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x﹣2),
∴f(x﹣2)=f(x+2)=f(2﹣x),即f(x)=f(x+4),即函數(shù)的周期是4.
當(dāng) x∈[0,2]時(shí),﹣x∈[﹣2,0],此時(shí)f(﹣x)=(
)﹣x﹣1=f(x),即f(x)=2x﹣1,
且當(dāng)x∈[﹣2,0]時(shí),f(x)=(
)x﹣1.
分別作出函數(shù)f(x)(圖中黑色曲線)和y=loga(x+2)(圖中紅色曲線)圖象如圖:
由在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)有3個(gè)不同的實(shí)數(shù)根,
可得函數(shù)f(x)和y=loga(x+2)圖象有3個(gè)交點(diǎn),
故有
,求得
<a<2,
故選:D.![]()
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b是常數(shù),函數(shù)f(x)=ax3+bln(x+
)+3在(﹣∞,0)上的最大值為10,則f(x)在(0,+∞)上的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
)為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為
.
(1)當(dāng)
時(shí),求
的單調(diào)遞減區(qū)間;
(2)將函數(shù)
的圖象沿
軸方向向右平移
個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的
(縱坐標(biāo)不變),得到函數(shù)
的圖象.當(dāng)
時(shí),求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),若
在區(qū)間
上的最小值為
,求
的取值范圍;
(2)若對(duì)任意
,
,且
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是( )
A.y=5 ![]()
B.y=log2(3x+2)
C.y= ![]()
D.y=(
)1﹣x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高中流行這樣一句話“文科就怕數(shù)學(xué)不好,理科就怕英語(yǔ)不好”.下表是一次針對(duì)高三文科學(xué)生的調(diào)查所得的數(shù)據(jù),試問(wèn):在出錯(cuò)概率不超過(guò)0.01的前提下文科學(xué)生總成績(jī)不好與數(shù)學(xué)成績(jī)不好有關(guān)系嗎?
總成績(jī)好 | 總成績(jī)不好 | 總計(jì) | |
數(shù)學(xué)成績(jī)好 | 20 | 10 | 30 |
數(shù)學(xué)成績(jī)不好 | 5 | 15 | 20 |
總計(jì) | 25 | 25 | 50 |
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè)f(x)=
,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測(cè)繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測(cè)繪點(diǎn),用測(cè)繪儀進(jìn)行測(cè)繪,O地為一磁場(chǎng),距離其不超過(guò)
km的范圍內(nèi)會(huì)測(cè)繪儀等電子儀器形成干擾,使測(cè)量結(jié)果不準(zhǔn)確,則該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-![]()
B.![]()
C.1-![]()
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com