【題目】已知函數(shù)
.
(1)若
是
的極大值點,求
的值;
(2)若
在
上只有一個零點,求
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)首先對函數(shù)
進(jìn)行求導(dǎo),然后通過極大值點所對應(yīng)的導(dǎo)函數(shù)值為0即可求出
的值,最后通過檢驗即可得出結(jié)果;
(2)首先可以設(shè)方程
并寫出方程
的導(dǎo)函數(shù),然后將
在
上只有一個零點轉(zhuǎn)化為
在
上只有一個零點,再利用方程
的導(dǎo)函數(shù)求出方程
的最小值,最后對方程
的最小值與0之間的關(guān)系進(jìn)行分類討論即可得出結(jié)果。
(1)
,
因為
是
的極大值點,所以
,解得
,
當(dāng)
時,
,
,
令
,解得
,
當(dāng)
時,
,
在
上單調(diào)遞減,又
,
所以當(dāng)
時,
;當(dāng)
時,
,
故
是
的極大值點;
(2)令
,
,
在
上只有一個零點即
在
上只有一個零點,
當(dāng)
時,
,
單調(diào)遞減;當(dāng)
時,
,
單調(diào)遞增,所以
.
(Ⅰ)當(dāng)
,即
時,
時,
在
上只有一個零點,即
在
上只有一個零點.
(Ⅱ)當(dāng)
,即
時,取
,
,
①若
,即
時,
在
和
上各有一個零點,即
在
上有2個零點,不符合題意;
②當(dāng)
即
時,
只有在
上有一個零點,即
在
上只有一個零點,
綜上得,當(dāng)
時,
在
上只有一個零點。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一個質(zhì)地均勻的骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“不小于5的點數(shù)出現(xiàn)”,則一次試驗中,事件A或事件B至少有一個發(fā)生的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機(jī)抽取
名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的
名會員消費金額(單位:萬元)都在區(qū)間
內(nèi),調(diào)查結(jié)果按消費金額分成
組,制作成如下的頻率分布直方圖.
![]()
(1)求該
名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)
(2)現(xiàn)采用分層抽樣的方式從前
組中選取
人進(jìn)行消費愛好調(diào)查,然后再從前
組選取的人中隨機(jī)選
人,求這
人都來自第
組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體
,過對角線
作平面
交棱
于點
,交棱
于點
,下列正確的是( )
A.平面
分正方體所得兩部分的體積相等;
B.四邊形
一定是平行四邊形;
C.平面
與平面
不可能垂直;
D.四邊形
的面積有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的長軸長為
,
,
是其長軸頂點,
是橢圓上異于
,
的動點,且
.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)如圖,若動點
在直線
上,直線
,
分別交橢圓
于
,
兩點.請問:直線
是否過定點?若是,求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
)在點
處的切線斜率為1.
(1)用
表示
;
(2)設(shè)
,若
對定義域內(nèi)的
恒成立,求實數(shù)
的取值范圍;
(3)在(2)的前提下,如果
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。
![]()
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,且
是
上的增函數(shù),求實數(shù)
的取值范圍;
(2)當(dāng)
,且對任意實數(shù)
,關(guān)于
的方程
總有三個不相等的實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com