| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 由約束條件畫出平面區(qū)域,由z=2x+y得y=-2x+z,然后平移直線,利用z的幾何意義確定目標(biāo)函數(shù)的最大值與最小值即可求出答案.
解答 解:∵|y|=x?$\left\{\begin{array}{l}{y≥0}\\{y=x}\end{array}\right.$或$\left\{\begin{array}{l}{y<0}\\{y=-x}\end{array}\right.$,
∴|y|=x與x=2圍成的平面區(qū)域如圖,![]()
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,則由圖象可知當(dāng)直線經(jīng)過點(diǎn)B(2,2)時(shí),直線y=-2x+z的截距最大,此時(shí)z最大為2×2+2=6;
當(dāng)直線y=-2x+z經(jīng)過點(diǎn)O(0,0)時(shí),直線y=-2x+z的截距最小,此時(shí)z最小為0.
∴z=2x+y的最大值與最小值之和為6+0=6.
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,數(shù)形結(jié)合是解決問題的基本方法,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 11 | B. | 12 | C. | 13 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2<t<-$\frac{4}{3}$ | B. | -2<t≤-$\frac{4}{3}$ | C. | -2≤t≤-$\frac{4}{3}$ | D. | -2≤t<-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{36}{5}$ | B. | 8 | C. | 20 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x>1} | B. | {x|x<3} | C. | ∅ | D. | {x|1<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com