【題目】在
中,角
的對邊分別為
,若
(
).
(1)判斷
的形狀;
(2)若
,求
的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,兩條公路AP與AQ夾角A為鈍角,其正弦值是
.甲乙兩人從A點出發(fā)沿著兩條公路進行搜救工作,甲沿著公路AP方向,乙沿著公路AQ方向.
![]()
(1)當甲前進5km的時候到達P處,同時乙到達Q處,通訊測得甲乙兩人相距
km,求乙在此時前進的距離AQ;
(2)甲在5公里處原地未動,乙回頭往A方向行走至M點收到甲發(fā)出的信號,此時M點看P、Q兩點的張角為
(張角為
QMP)
,求甲乙兩人相距的距離MP的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差
與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)
,作了初步處理,得到下表:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 9 |
發(fā)芽率 | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為
,求事件“
均小于26”的概率;
(2)請根據(jù)3月1日至3月5日的數(shù)據(jù),求出
關于
的線性回歸方程
,并預報3月份晝夜溫差為14度時實驗室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程
中的斜率和截距最小二乘法估計公式分別為:
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是直角梯形,
,又
平面
,且
,點
在棱
上,且
.
![]()
(1)求異面直線
與
所成的角的大。
(2)求證:
平面
;
(3)求二面角
的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某投資公司擬投資開發(fā)某項新產品,市場評估能獲得10~1 000萬元的投資收益.現(xiàn)公司準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不低于1萬元,同時不超過投資收益的20%.
(1) 設獎勵方案的函數(shù)模型為f(x),試用數(shù)學語言表述公司對獎勵方案的函數(shù)模型f(x)的基本要求;
(2) 公司能不能用函數(shù)f(x)=
+2作為預設的獎勵方案的模型函數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量
(噸)與時間
(單位:小時,規(guī)定早晨六點時
)的函數(shù)關系為
,水塔的進水量有10級,第一級每小時進水10噸,以后每提高一級, 進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形.
![]()
(Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;
(Ⅱ)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD—A1B1C1D1? 如何組拼?試證明你的結論;
(Ⅲ)在(Ⅱ)的情形下,設正方體ABCD—A1B1C1D1的棱CC1的中點為E, 求平面AB1E與平面ABC所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結論中不正確的是( )
A. y與x具有正的線性相關關系
B. 若給變量x一個值,由回歸直線方程
=0.85x-85.71得到一個
,則
為該統(tǒng)計量中的估計值
C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com