欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.在等差數(shù)列{an}中,已知a2+a9=10.則3a5+a7=( 。
A.17B.18C.19D.20

分析 設(shè)等差數(shù)列{an}的公差為d,由題意可得2a1+9d=10,整體代入3a5+a7=4a1+18d可得.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵在等差數(shù)列{an}中a2+a9=a1+d+a1+8d=2a1+9d=10.
∴3a5+a7=3(a1+4d)+a1+6d=4a1+18d=20,
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.函數(shù)f(x)=ax3+bx2+cx+d在x=0處的切線方程為8x+y-1=0,且函數(shù)f(x)在x=-2和x=4處有極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在x∈[-3,3]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),x∈(0,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某工廠2013年的月產(chǎn)值按等差數(shù)列增長(zhǎng),一季度總產(chǎn)值為20萬(wàn)元,上半年總產(chǎn)值為70萬(wàn)元,則2013年全年的總產(chǎn)值是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=an(an+1)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn,則T2n-Tn≥$\frac{1}{2}$(選“≥,>,≤,<”作為答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)y=Asin(ωx+φ)(x∈R,A,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)圖象上一個(gè)最高點(diǎn)為P(2,2),由這個(gè)最高點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸相交于點(diǎn)Q(6,0)
(1)求這個(gè)函數(shù)的解析式;
(2)寫出整個(gè)函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知tan2θ=$\frac{3}{4}$,θ∈(0,$\frac{π}{4}$),則$\frac{si{n}^{2}θ+cos2θ}{sin(θ+\frac{π}{4})}$的值為(  )
A.$\frac{9\sqrt{5}}{20}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.變式已知f(x)=cos(2x+θ)關(guān)于直線x=$\frac{π}{6}$對(duì)稱,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系的極坐標(biāo)方程,已知曲線C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù))與曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)分別寫出曲線C1,C2的普通方程;
(2)求C1和C2公共弦的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案