【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是( )
![]()
A.54周歲以上參保人數(shù)最少B.18~29周歲人群參?傎M用最少
C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
,上、下頂點分別是
、
,上、下焦點分別是
、
,焦距為
,點
在橢圓上.
(1)求橢圓的方程;
(2)若
為橢圓上異于
、
的動點,過
作與
軸平行的直線
,直線
與
交于點
,直線
與直線
交于點
,判斷
是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻率分布直方圖:
![]()
(1)求這1000件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)
和樣本方差
(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(2)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值
服從正態(tài)分布
,其中以
近似為樣本平均數(shù)
,
近似為樣本方差
.
(。├迷撜龖B(tài)分布,求
;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記
表示這100件產(chǎn)品中質(zhì)量指標值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求
.
附:
.若
,則
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)
滿足
,且
為偶函數(shù),若
在
內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從中國教育在線官方公布的考研動機調(diào)查來看,本科生扎堆考研的原因大概集中在這6個方面:本科就業(yè)壓力大,提升競爭力;通過考研選擇真正感興趣的專業(yè);為了獲得學歷;繼續(xù)深造;隨大流;有名校情結(jié).如圖是2015~2019年全國碩士研究生報考人數(shù)趨勢圖(單位:萬人)的拆線圖.
![]()
(1)求
關(guān)于
的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,預(yù)測2021年全國碩士研究生報考人數(shù).
參考數(shù)據(jù):
;
回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線x=﹣2上有一動點Q,過點Q作直線l,垂直于y軸,動點P在l1上,且滿足
(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程;
(2)已知定點M(
,0),N(
,0),點A為曲線C上一點,直線AM交曲線C于另一點B,且點A在線段MB上,直線AN交曲線C于另一點D,求△MBD的內(nèi)切圓半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明下班回家途經(jīng)3個有紅綠燈的路口,交通法規(guī)定:若在路口遇到紅燈,需停車等待;若在路口沒遇到紅燈,則直接通過.經(jīng)長期觀察發(fā)現(xiàn):他在第一個路口遇到紅燈的概率為
,在第二、第三個道口遇到紅燈的概率依次減小,在三個道口都沒遇到紅燈的概率為
,在三個道口都遇到紅燈的概率為
,且他在各路口是否遇到紅燈相互獨立.
(1)求小明下班回家途中至少有一個道口遇到紅燈的概率;
(2)求小明下班回家途中在第三個道口首次遇到紅燈的概率;
(3)記
為小明下班回家途中遇到紅燈的路口個數(shù),求數(shù)學期望
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com