| A. | O | B. | $\frac{3}{2}$ | C. | 2 | D. | -l |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答
解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y+a,得y=-$\frac{1}{2}x+\frac{z}{2}$+$\frac{a}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$+$\frac{a}{2}$,由圖象可知當直線y=-$\frac{1}{2}x+\frac{z}{2}$+$\frac{a}{2}$經(jīng)過點原點(0,0)時,直線y=-$\frac{1}{2}x+\frac{z}{2}$+$\frac{a}{2}$的截距最小,
此時z最。
此時最小值為z=a,
∵z=x+2y+a的最小值是2,
∴a=2.
故選:C.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $[2-\sqrt{2},2+\sqrt{2}]$ | B. | $(2-\sqrt{2},2+\sqrt{2})$ | C. | [1,3] | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{3}{5}i$ | B. | $-\frac{3}{5}i$ | C. | $-\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 13 | C. | 5 | D. | 12 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com