如圖,四棱錐
的底面是直角梯形,
,
,
和
是兩個(gè)邊長為
的正三角形,
,
為
的中點(diǎn),
為
的中點(diǎn).
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
(Ⅰ)詳見解析;(Ⅱ) 詳見解析;(Ⅲ) 直線
與平面
所成角的正弦值為
.
【解析】
試題分析:(I)利用兩平面垂直的性質(zhì)定理,證明BC
平面AEC,再根據(jù)線面垂直的性質(zhì)定理證明AE
BC,根據(jù)勾股定理證明AE
EC,利用線面垂直的判定定理證明AE
平面BCEF;(II)三棱錐體積利用體積轉(zhuǎn)換為以E為頂點(diǎn),
為底面的椎體體積求得. 等體積轉(zhuǎn)化,是立體幾何經(jīng)常運(yùn)用的一種方法,高考也考過.
試題解析:(Ⅰ)證明:設(shè)
為
的中點(diǎn),連接
,則
,∵
,
,
,∴四邊形
為正方形,∵
為
的中點(diǎn),∴
為
的交點(diǎn),∵
,
,
∵![]()
,∴![]()
,
,在三角形
中,
,∴
,∵
,∴
平面
;
![]()
(Ⅱ)方法1:連接
,∵
為
的中點(diǎn),
為
中點(diǎn),∴
,∵
平面
,
平面
,∴
平面
.方法2:由(Ⅰ)知
平面
,又
,所以過
分別做
的平行線,以它們做
軸,以
為
軸建立如圖所示的空間直角坐標(biāo)系,由已知得:
,
,![]()
,
,
,
,則
,
,
,
.∴
∴
∵
平面
,
平面
,∴
平面
;
![]()
(Ⅲ) 設(shè)平面
的法向量為
,直線
與平面
所成角
,則
,即
,解得
,令
,則平面
的一個(gè)法向量為
,又![]()
則
,∴直線
與平面
所成角的正弦值為
.
考點(diǎn):1、線面垂直的判定和性質(zhì)定理應(yīng)用;2、線面平行的判定和性質(zhì)定理應(yīng)用;3、求線面角的問題,考查學(xué)生的化歸與轉(zhuǎn)化能力以及空間想象能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年朝陽區(qū)二模文)(13分)
如圖,四棱錐
的底面是矩形,
底面
,
為
邊的中點(diǎn),
與平面
所成的角為
,且
,
.
(Ⅰ) 求證:
平面
;
(Ⅱ)求二面角
的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東實(shí)驗(yàn)中學(xué)診斷三理)(13分)如圖:四棱錐
的底面
是提醒,腰
,
平分
且與
垂直,側(cè)面
都垂直于底面,平面
與底面
成60°角
(1)求證:
;
(2)求二面角
的大小![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考文科數(shù)學(xué)試卷 題型:解答題
如圖,四棱錐
的底面是平行四邊形,
平面
,
,
,
點(diǎn)
是
上的點(diǎn),且
.
(Ⅰ)求證:
;
(Ⅱ)求
的值,使
平面
;
(Ⅲ)當(dāng)
時(shí),求三棱錐
與四棱錐
的體積之比.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期摸底理科數(shù)學(xué) 題型:解答題
((本小題滿分14分)如圖,四棱錐
的底面
是正方形,側(cè)棱![]()
底面
,
,
、
分別是棱
、
的中點(diǎn).
(1)求證:
; (2) 求直線
與平面
所成的角的正切值
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題
(本小題滿分12 分)
如圖,四棱錐
的底面是邊長為
的菱形,
,
平面
,
,
為
的中點(diǎn),O為底面對(duì)角線的交點(diǎn);
(1)求證:平面
平面
;
(2)求二面角
的正切值。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com