| 日需求量n | 8 | 9 | 10 | 11 | 12 |
| 頻數(shù) | 9 | 11 | 15 | 10 | 5 |
分析 (Ⅰ)根據(jù)題意分段求解得出當(dāng)1≤n≤10時(shí),y利潤(rùn),當(dāng)n>10時(shí),y利潤(rùn),
(Ⅱ)①50天內(nèi)有9天獲得的利潤(rùn)380元,有11天獲得的利潤(rùn)為440元,有15天獲得利潤(rùn)為500元,有10天獲得的利潤(rùn)為530元,有5天獲得的利潤(rùn)為560,求其平均數(shù)即可.
②當(dāng)天的利潤(rùn)在區(qū)間[400,500]有11+15+10天,即可求解概率.
解答 解:(Ⅰ)當(dāng)日需求量n≥10時(shí),利潤(rùn)為y=50×10+(n-10)×30=30n+200;
當(dāng)需求量n<10時(shí),利潤(rùn)y=50×n-(10-n)×10=60n-100.
所以利潤(rùn)y與日需求量n的函數(shù)關(guān)系式為:$y=\left\{{\begin{array}{l}{30n+200,n≥10,n∈N}\\{60n-100,n<10,n∈N}\end{array}}\right.$
(Ⅱ)50天內(nèi)有9天獲得的利潤(rùn)380元,有11天獲得的利潤(rùn)為440元,有15天獲得利潤(rùn)為500元,有10天獲得的利潤(rùn)為530元,有5天獲得的利潤(rùn)為560元.
①$\frac{380×9+440×11+500×15+530×10+560×5}{50}=477.2$
②若利潤(rùn)在區(qū)間[400,550]內(nèi)的概率為$P=\frac{11+15+10}{50}=\frac{18}{25}$
點(diǎn)評(píng) 本題考查了運(yùn)用概率知識(shí)求解實(shí)際問題的利潤(rùn)問題,仔細(xì)閱讀題意,得出有用的數(shù)據(jù),理清關(guān)系,正確代入數(shù)據(jù)即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,2) | B. | (2,+∞) | C. | (-∞,1)∪(1,2) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com