欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得如表:
日需求量n89101112
頻數(shù)91115105
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間[400,550]內(nèi)的概率.

分析 (Ⅰ)根據(jù)題意分段求解得出當(dāng)1≤n≤10時(shí),y利潤(rùn),當(dāng)n>10時(shí),y利潤(rùn),
(Ⅱ)①50天內(nèi)有9天獲得的利潤(rùn)380元,有11天獲得的利潤(rùn)為440元,有15天獲得利潤(rùn)為500元,有10天獲得的利潤(rùn)為530元,有5天獲得的利潤(rùn)為560,求其平均數(shù)即可.
②當(dāng)天的利潤(rùn)在區(qū)間[400,500]有11+15+10天,即可求解概率.

解答 解:(Ⅰ)當(dāng)日需求量n≥10時(shí),利潤(rùn)為y=50×10+(n-10)×30=30n+200;
當(dāng)需求量n<10時(shí),利潤(rùn)y=50×n-(10-n)×10=60n-100.
所以利潤(rùn)y與日需求量n的函數(shù)關(guān)系式為:$y=\left\{{\begin{array}{l}{30n+200,n≥10,n∈N}\\{60n-100,n<10,n∈N}\end{array}}\right.$
(Ⅱ)50天內(nèi)有9天獲得的利潤(rùn)380元,有11天獲得的利潤(rùn)為440元,有15天獲得利潤(rùn)為500元,有10天獲得的利潤(rùn)為530元,有5天獲得的利潤(rùn)為560元.
①$\frac{380×9+440×11+500×15+530×10+560×5}{50}=477.2$
②若利潤(rùn)在區(qū)間[400,550]內(nèi)的概率為$P=\frac{11+15+10}{50}=\frac{18}{25}$

點(diǎn)評(píng) 本題考查了運(yùn)用概率知識(shí)求解實(shí)際問題的利潤(rùn)問題,仔細(xì)閱讀題意,得出有用的數(shù)據(jù),理清關(guān)系,正確代入數(shù)據(jù)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}$+y2=1(a>1),
(1)若A(0,1)到焦點(diǎn)的距離為$\sqrt{3}$,求橢圓的離心率.
(2)Rt△ABC以A(0,1)為直角頂點(diǎn),邊AB、AC與橢圓交于兩點(diǎn)B、C.若△ABC面積的最大值為$\frac{27}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義域?yàn)镽的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x),滿足f(x)>f′(x),且f(0)=2,則不等式f(x)<2ex的解集為( 。
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左右兩個(gè)頂點(diǎn)分別為A,B,點(diǎn)M是直線l:x=4上任意一點(diǎn),直線MA,MB分別與橢圓交于不同于A,B兩點(diǎn)的點(diǎn)P,點(diǎn)Q.
(Ⅰ)求橢圓的離心率和右焦點(diǎn)F的坐標(biāo);
(Ⅱ)(i)證明P,F(xiàn),Q三點(diǎn)共線;
(ii)求△PQB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=3,AC=$\sqrt{13}$,B=$\frac{π}{3}$,則△ABC的面積是(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)為R上的減函數(shù),則滿足f($\frac{1}{x-1}$)>f(1)的實(shí)數(shù)x的取值范圍是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,1)∪(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x2-2x|+ax+a.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最小值;
(Ⅱ)若任意x∈[-1,2],使得f(x)≥|x|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(0,1),B(0,-1)是橢圓$\frac{x^2}{2}$+y2=1的兩個(gè)頂點(diǎn),過其右焦點(diǎn)F的直線l與橢圓交于C,D兩點(diǎn),與y軸交于P點(diǎn)(異于A,B兩點(diǎn)),直線AC與直線BD交于Q點(diǎn).
(Ⅰ)當(dāng)|CD|=$\frac{{3\sqrt{2}}}{2}$時(shí),求直線l的方程;
(Ⅱ)求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),如果存在實(shí)數(shù)x0,使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+6π)成立,則ω的最小值為$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案