【題目】甲、乙兩位同學(xué)進行籃球三分球投籃比賽,甲每次投中的概率為
,乙每次投中的概率為
,每人分別進行三次投籃.
(I)記甲投中的次數(shù)為
,求
的分布列及數(shù)學(xué)期望
;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投進2次的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以直角坐標(biāo)系的原點為極點,以
軸的正半軸為極軸建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程;
(2)若
與曲線
相切,且
與坐標(biāo)軸交于
兩點,求以
為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本大題滿分12分)
隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生,某市場研究人員為了了解共享單車運營公司
的經(jīng)營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,并繪制了相應(yīng)的折線圖:
![]()
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率
與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測
公司2017年4月的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車,現(xiàn)有采購成本分別為
元/輛和1200元/輛的
、
兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致單車使用壽命各不相同,考慮到公司運營的經(jīng)濟效益,該公司決定先對這兩款車型的單車各100輛進行科學(xué)模擬測試,得到兩款單車使用壽命的頻數(shù)表如下:
![]()
經(jīng)測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是
公司的負責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?
參考公式:回歸直線方程為
,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo)
)、推理能力(指標(biāo)
)、建模能力(指標(biāo)
)的相關(guān)性,將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)
的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若
,則數(shù)學(xué)核心素養(yǎng)為一級;若
,則數(shù)學(xué)核心素養(yǎng)為二級;若
,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機訪問了某校10名學(xué)生,得到如下數(shù)據(jù):
學(xué)生編號 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;
(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生人數(shù)記為
,求隨機變量
的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,則關(guān)于
的方程
,給出下列五個命題:①存在實數(shù)
,使得該方程沒有實根;
②存在實數(shù)
,使得該方程恰有
個實根;
③存在實數(shù)
,使得該方程恰有
個不同實根;
④存在實數(shù)
,使得該方程恰有
個不同實根;
⑤存在實數(shù)
,使得該方程恰有
個不同實根.
其中正確的命題的個數(shù)是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
是偶函數(shù)
的導(dǎo)函數(shù),
在區(qū)間
上的唯一零點為2,并且當(dāng)
時,
,則使得
成立的
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)命題p:函數(shù)y=
在定義域上為減函數(shù);命題q:a,b∈(0,+∞),當(dāng)a+b=1時,
+
=3.以下說法正確的是( )
A. p∨q為真B. p∧q為真
C. p真q假D. p,q均假
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級共有
名學(xué)生,其中男生
名,女生
名,該校組織了一次口語模擬考試(滿分為
分).為研究這次口語考試成績?yōu)楦叻质欠衽c性別有關(guān),現(xiàn)按性別采用分層抽樣抽取
名學(xué)生的成績,按從低到高分成
,
,
,
,
,
,
七組,并繪制成如圖所示的頻率分布直方圖.已知
的頻率等于
的頻率,
的頻率與
的頻率之比為
,成績高于
分的為“高分”.
![]()
(1)估計該校高一年級學(xué)生在口語考試中,成績?yōu)椤案叻帧钡娜藬?shù);
(2)請你根據(jù)已知條件將下列
列聯(lián)表補充完整,并判斷是否有
的把握認為“該校高一年級學(xué)生在本次口語考試中成績及格(
分以上(含
分)為及格)與性別有關(guān)”?
口語成績及格 | 口語成績不及格 | 合計 | |
男生 |
|
| |
女生 |
|
| |
合計 |
|
附臨界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
的定義域為
,
, 當(dāng)
時,
, 則函數(shù)
在區(qū)間
上的所有零點的和為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com