【題目】已知函數(shù)
,
。
Ⅰ.求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
Ⅱ.當(dāng)
時,方程
恰有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
Ⅲ.將函數(shù)
的圖象向右平移
個單位后所得函數(shù)
的圖象關(guān)于原點(diǎn)中心對稱,求
的最小值。
【答案】(1)遞增區(qū)間為
;(2)
;(3)
.
【解析】
(I)由條件利用余弦函數(shù)的周期性、單調(diào)性得出結(jié)論.
(Ⅱ)根據(jù)余弦函數(shù)的圖象,數(shù)形結(jié)合可得k的范圍.
(Ⅲ)由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的奇偶性,求得m的最小正值.
解:(1)因?yàn)?/span>
,所以函數(shù)
的最小正周期為
,
由
,得
,故函數(shù)
的遞增區(qū)間為
;
(Ⅱ)因?yàn)?/span>
在區(qū)間
上為增函數(shù),在區(qū)間
上為減函數(shù)
又
,
,
,
當(dāng)
時方程
恰有兩個不同實(shí)根.
(Ⅲ)![]()
![]()
由題意得
,
,![]()
當(dāng)
時,
,此時
關(guān)于原點(diǎn)中心對稱.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的管理者通過公司近年來科研費(fèi)用支出x(百萬元)與公司所獲得利潤y(百萬元)的散點(diǎn)圖發(fā)現(xiàn),y與x之間具有線性相關(guān)關(guān)系,具體數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
科研費(fèi)用x(百萬元) | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
公司所獲利潤y(百萬元) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求y關(guān)于x的回歸直線方程;
(2)若該公司的科研投入從2011年開始連續(xù)10年每一年都比上一年增加10萬元,預(yù)測2017年該公司可獲得的利潤約為多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,
,其中0<α<x<π.
(1)若α=
,求函數(shù)
的最小值及相應(yīng)x的值;
(2)若
與
的夾角為
,且
,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在約束條件
下,當(dāng)t≥0時,其所表示的平面區(qū)域的面積為S(t),S(t)與t之間的函數(shù)關(guān)系用下列圖象表示,正確的應(yīng)該是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本
(單位:萬元)與產(chǎn)品銷售收入
(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求
關(guān)于
的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大(
)?
相關(guān)公式:
,
.
【答案】(1)
.(2)投入成本20萬元的毛利率更大.
【解析】試題分析:(1)由回歸公式,解得線性回歸方程為
;(2)當(dāng)
時,
,對應(yīng)的毛利率為
,當(dāng)
時,
,對應(yīng)的毛利率為
,故投入成本20萬元的毛利率更大。
試題解析:
(1)
,
,
![]()
,
,故
關(guān)于
的線性回歸方程為
.
(2)當(dāng)
時,
,對應(yīng)的毛利率為
,
當(dāng)
時,
,對應(yīng)的毛利率為
,
故投入成本20萬元的毛利率更大.
【題型】解答題
【結(jié)束】
21
【題目】如圖,在正方體
中,
分別是棱
的中點(diǎn),
為棱
上一點(diǎn),且異面直線
與
所成角的余弦值為
.
![]()
(1)證明:
為
的中點(diǎn);
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對男女學(xué)生是否喜愛古典音樂進(jìn)行了一個調(diào)查,調(diào)查者對學(xué)校高三年級隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛 | 不喜愛 | 總計 | |
男學(xué)生 | 60 | 80 | |
女學(xué)生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再從這10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x+a|(a∈R).
(1)若a=1時,求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+mlog2(x+
)(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com