【題目】已知函數(shù)
(
且
).
(1)判斷
的奇偶性并證明;
(2)若
,判斷
在
的單調(diào)性并用復(fù)合函數(shù)單調(diào)性結(jié)論加以說(shuō)明;
(3)若
,是否存在
,使
在
的值域?yàn)?/span>
?若存在,求出此時(shí)
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)
是奇函數(shù),證明見(jiàn)解析;(2)
在
上單調(diào)遞減,見(jiàn)解析(3)存在,
.
【解析】
(1)根據(jù)奇函數(shù)的定義可判斷該函數(shù)為奇函數(shù).
(2)令
,可判斷此函數(shù)為增函數(shù),而外函數(shù)
為減函數(shù),由復(fù)合函數(shù)的單調(diào)性的判斷方法可知原來(lái)的函數(shù)為
上的減函數(shù).
(3)根據(jù)函數(shù)的單調(diào)性可把
的存在性問(wèn)題轉(zhuǎn)化為方程
有兩正根,利用根分布可求實(shí)數(shù)
的取值范圍.
(1)
是奇函數(shù),證明如下:
由
解得
或
,
所以
的定義域?yàn)?/span>
,關(guān)于原點(diǎn)對(duì)稱.
∵![]()
,
故
為
上的奇函數(shù).
(2)令
,則
在
上為單調(diào)遞增函數(shù).
因?yàn)?/span>
,故
為減函數(shù),
故復(fù)合函數(shù)
為
上為單調(diào)遞減函數(shù).
(3)由(2)知,當(dāng)
時(shí),
在
上單調(diào)遞減,則
.
假設(shè)存在
,使
在
的值域?yàn)?/span>
.
則有
,∴
.
所以
,
是方程
的兩正根,
整理得
在
有2個(gè)不等根
和
.
令
,則
在
有2個(gè)零點(diǎn),
,解得
,故
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線
,過(guò)點(diǎn)
任作一直線與
相交于
兩點(diǎn),過(guò)點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
(
為坐標(biāo)原點(diǎn)).
![]()
(1)證明:動(dòng)點(diǎn)
在定直線上;
(2)作
的任意一條切線
(不含
軸)與直線
相交于點(diǎn)
,與(1)中的定直線相交于點(diǎn)
,證明:
為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),函數(shù)
的圖象恒不在
軸的上方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列
和等比數(shù)列
中,
,
,
是
前
項(xiàng)和.
(1)若
,求實(shí)數(shù)
的值;
(2)是否存在正整數(shù)
,使得數(shù)列
的所有項(xiàng)都在數(shù)列
中?若存在,求出所有的
,若不存在,說(shuō)明理由;
(3)是否存在正實(shí)數(shù)
,使得數(shù)列
中至少有三項(xiàng)在數(shù)列
中,但
中的項(xiàng)不都在數(shù)列
中?若存在,求出一個(gè)可能的
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A
經(jīng)過(guò)定點(diǎn)
,且與直線
相切,設(shè)動(dòng)圓圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線
,
分別與曲線
交于
,
兩點(diǎn),直線
,
的斜率存在,且傾斜角互補(bǔ),證明:直線
的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸上,且拋物線上有一點(diǎn)
到焦點(diǎn)的距離為5.
(1)求該拋物線
的方程;
(2)已知拋物線上一點(diǎn)
,過(guò)點(diǎn)
作拋物線的兩條弦
和
,且
,判斷直線
是否過(guò)定點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,其中
表示
中的最小者.下列說(shuō)法錯(cuò)誤的是
A. 函數(shù)
為偶函數(shù) B. 若
時(shí),有![]()
C. 若
時(shí),
D. 若
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象與直線
相切于點(diǎn)
.
(Ⅰ)求
的值;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com