【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系
中,曲線
的參數(shù)方程為
(
是參數(shù)),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)設(shè)曲線
經(jīng)過伸縮變換
得到曲線
,
是曲線
上任意一點,求點
到曲線
的距離的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的一個頂點為A(2,0),離心率為
.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為
時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線L: y=x+m與拋物線y2=8x交于A、B兩點(異于原點),
(1)若直線L過拋物線焦點,求線段 |AB|的長度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)當
時,
在
上恒成立,求實數(shù)
的取值范圍;
(2)當
時,若函數(shù)
在
上恰有兩個不同的零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四棱錐
中,
底面
,面
是直角梯形,
為側(cè)棱
上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:
平面
;
(2)線段
上是否存在點
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點
,并求
的長;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量
(升)關(guān)于行駛速度
(千米/小時)的函數(shù)解析式可以表示為:
,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,若數(shù)列
滿足:對所有
,
,且當
時,
,則稱
為“
數(shù)列”,設(shè)
R,函數(shù)
,數(shù)列
滿足
,
(
).
(1)若
,而
是
數(shù)列,求
的值;
(2)設(shè)
,證明:存在
,使得
是
數(shù)列,但對任意
,
都不是
數(shù)列;
(3)設(shè)
,證明:對任意
,都存在
,使得
是
數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近
個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中
表示
年第一季度,以此類推):
季度 |
|
|
|
|
|
季度編號x |
|
|
|
|
|
銷售額y(百萬元) |
|
|
|
|
|
(1)公司市場部從中任選
個季度的數(shù)據(jù)進行對比分析,求這
個季度的銷售額都超過
千萬元的概率;
(2)求
關(guān)于
的線性回歸方程,并預(yù)測該公司
的銷售額.
附:線性回歸方程:
其中
,![]()
參考數(shù)據(jù):
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com