| A. | ①③ | B. | ①④ | C. | ②④ | D. | ③④ |
分析 分析:①研究函數(shù)的奇偶性,可用偶函數(shù)的定義來(lái)證明之;
②研究的是函數(shù)的周期性,采用舉對(duì)立面的形式說(shuō)明其不成立;
③找出一個(gè)常數(shù)M,都存在實(shí)數(shù)x0,使得|f(x0)|≥M成立即可;
④根據(jù)切線的幾何意義,先求導(dǎo),在找到特殊點(diǎn),問(wèn)題得以解決.
解答
解:對(duì)于①,∵f(-x)=-xcos(-x)=-xcosx=-f(x),
∴f(x)為奇函數(shù),
∴f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,故①錯(cuò);
對(duì)于②∵當(dāng)x=2kπ時(shí),f(x)=x,隨著x的增大函數(shù)值也在增大,所以不會(huì)是周期函數(shù),故②錯(cuò);
對(duì)于③取M=1,當(dāng)x0=π時(shí),|f(2π)|=2π≥1;故③正確;
對(duì)于④∵f′(x)=cosx-xsinx,
令f′(x)=cosx-xsinx=0,
即xtanx=1,
此時(shí)方程由無(wú)數(shù)個(gè)解,
∴使k=0的解有無(wú)數(shù)個(gè),
故函數(shù)f(x)的圖象上存在無(wú)數(shù)個(gè)點(diǎn),使得該函數(shù)在這些點(diǎn)處的切線與x軸平行,故④正確.
故選:D.
點(diǎn)評(píng) 本題考點(diǎn)是函數(shù)的單調(diào)性判斷與證明,函數(shù)的奇偶性,函數(shù)的中心對(duì)稱的判斷及函數(shù)的周期性,涉及到的性質(zhì)比較多,且都是定義型,本題知識(shí)性較強(qiáng),做題時(shí)要注意準(zhǔn)確運(yùn)用相應(yīng)的知識(shí)準(zhǔn)確解題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | sina>sinb | B. | log2a<log2b | C. | a${\;}^{\frac{1}{2}}$<b${\;}^{\frac{1}{2}}$ | D. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com