欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

分析 根據(jù)指數(shù)函數(shù)的值域可得到3x+1>1,而對(duì)數(shù)函數(shù)$y=lo{g}_{\frac{1}{2}}x$為減函數(shù),從而可得出f(x)的值域.

解答 解:3x>0;
∴3x+1>1;
∴$lo{g}_{\frac{1}{2}}({3}^{x}+1)<lo{g}_{\frac{1}{2}}1=0$;
∴f(x)的值域?yàn)椋?∞,0).
故選A.

點(diǎn)評(píng) 考查函數(shù)值域的概念,指數(shù)函數(shù)的值域,以及對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)二次函數(shù)f(x)=ax2+bx+c,f(-1)=0,且對(duì)?x∈R,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)若關(guān)于x的不等式f(x)-mx+1≤0的解集是空集,求實(shí)數(shù)m的取值的集合A.
(2)若關(guān)于x的方程f(x)-mx+1=0的兩根為x1,x2,試問(wèn):是否存在實(shí)數(shù)n,使得不等式n2+tn+1≤|x1-x2|對(duì)?m∈A及t∈[-2,2]恒成立?若存在,求出n的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1-1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},則A∩B=( 。
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知x,y為正實(shí)數(shù),且x+2y=3,則$\sqrt{2x(y+\frac{1}{2})}$ 的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)若函數(shù)f(x)=1g(ax2+ax+2)的定義域?yàn)閷?shí)數(shù)集R,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)=1g(ax2+ax+2)的值域?yàn)閷?shí)數(shù)集R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.cos(-2014π)的值為( 。
A.$\frac{1}{2}$B.1C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.(實(shí)驗(yàn)班)已知函數(shù)f(x)=x2+(a-2)x+1在區(qū)間(0,2)和(3,4)上分別存在零點(diǎn),則實(shí)數(shù)a的取值范圍為-$\frac{9}{4}$<a<-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,則$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案