分析 (1)化簡函數f(x)為正弦型函數,根據正弦函數的單調性寫出它的單調增區(qū)間;
(2)根據f(x)的解析式,結合α的取值范圍,利用三角函數關系即可求出cos2α的值.
解答 解:(1)函數$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
=$\frac{\sqrt{3}}{2}$sin2x+2•$\frac{1+cos2x}{2}$-$\frac{1-cos2x}{2}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$cos2x+$\frac{1}{2}$
=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+$\frac{1}{2}$,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,k∈Z,
∴函數f(x)的單調增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z;
(2)∵f(α)=$\sqrt{3}$sin(2α+$\frac{π}{3}$)+$\frac{1}{2}$=2,
∴sin(2α+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
又α∈[$\frac{π}{12}$,$\frac{5π}{12}$],
∴$\frac{π}{2}$≤2α+$\frac{π}{3}$≤$\frac{7π}{6}$,
∴2α+$\frac{π}{3}$=$\frac{2π}{3}$,
∴2α=$\frac{π}{3}$,
∴cos2α=$\frac{1}{2}$.
點評 本題考查了三角函數的化簡求值以及三角函數的圖象與性質的應用問題,是基礎題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{12}{5}$ | B. | 4 | C. | $-\frac{12}{5}$ | D. | -4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com