分析 (1)由已知得數(shù)列{an}是等差數(shù)列,由此結(jié)合已知條件能求出數(shù)列{an}的通項(xiàng)公式.
(2)由bn=$\frac{2}{n(12-{a}_{n})}$=$\frac{1}{n}-\frac{1}{n+1}$,利用裂項(xiàng)求和法能求出{bn}的前n項(xiàng)和.
解答 解:(1)∵an+2+an=2an+1(n∈N*),
∴數(shù)列{an}是等差數(shù)列,
∵a1=8,a4=2,∴2=8+3d,解得d=-2,
∴an=8+(n-1)×(-2)=-2n+10.
(2)bn=$\frac{2}{n(12-{a}_{n})}$=$\frac{2}{n(12+2n-10)}$=$\frac{2}{n(2n+2)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴{bn}的前n項(xiàng)和:
Tn=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)和裂項(xiàng)求和法的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | xm•x3=x3m | B. | (-4a3)2=4a6 | C. | (-x2)3=-x6 | D. | -(-m2)4=m8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{2}$,2) | C. | (2,+∞) | D. | ($\frac{1}{2}$,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | --$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com