欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,q:橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點(diǎn)在x軸上,若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

分析 分別判斷出p,q為真時(shí)的m的范圍,通過(guò)討論p,q的真假,得到關(guān)于m的不等式組,取并集即可.

解答 解:∵p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,
∴△=m2-6<0,解得:-$\sqrt{6}$<m<$\sqrt{6}$;
q:橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點(diǎn)在x軸上,
∴m-1>3-m>0,解得:2<m<3,
若“p或q”為真,“p且q”為假,
則:p,q一真一假,
p真q假時(shí):$\left\{\begin{array}{l}{-\sqrt{6}<m<\sqrt{6}}\\{m≥3或m≤2}\end{array}\right.$,解得:-$\sqrt{6}$<m<2,
p假q真時(shí):$\left\{\begin{array}{l}{m≥\sqrt{6}或m≤-\sqrt{6}}\\{2<m<3}\end{array}\right.$,解得:$\sqrt{6}$≤m<3,
故m的范圍是(-$\sqrt{6}$,2)∪[$\sqrt{6}$,3).

點(diǎn)評(píng) 本題考查了復(fù)合命題的真假,考查不等式恒成立問(wèn)題,考查橢圓問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)P(a,4)在拋物線C:x2=2py(p>0)上,P點(diǎn)到拋物線C的焦點(diǎn)F的距離為5
(1)求拋物線C的方程;
(2)已知圓E:x2+y2=2y,過(guò)圓心E作直線l與圓E和拋物線C自左而右依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直線l的方程:
(3)過(guò)點(diǎn)Q(2,4)的任一直線(不過(guò)P點(diǎn))與拋物線C交于A、B兩點(diǎn),直線AB與直線y=x-4交于點(diǎn)M,記直線PA、PB、PM的斜率分別為k1、k2、k3.問(wèn)是否存在實(shí)數(shù)λ,使得$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{3}}$,若存在,求出λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.當(dāng)-$\frac{π}{2}$≤x≤$\frac{π}{2}$時(shí),函數(shù)f(x)=2sin(x+$\frac{π}{3}$)有( 。
A.最大值1,最小值-1B.最大值1,最小值-$\frac{1}{2}$
C.最大值2,最小值-2D.最大值2,最小值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)分別將曲線C的參數(shù)方程和直線l的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)系下的普通方程;
(Ⅱ)動(dòng)點(diǎn)A在曲線C上,動(dòng)點(diǎn)B在直線l上,定點(diǎn)P的坐標(biāo)為(-2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(其中$A>0,ω>0,0<φ<\frac{π}{2}$)的最小正周期為π,且圖象上的一個(gè)最高點(diǎn)為$M(\frac{π}{6},3)$.
(1)求f(x)的解析式;
(2)若$x∈[{0,\frac{π}{4}}]$,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:?x∈(0,$\frac{π}{2}$),使得cosx≥x,則該命題的否定是( 。
A.?x∈(0,$\frac{π}{2}$),使得cosx>xB.?x∈(0,$\frac{π}{2}$),使得cosx≥x
C.?x∈(0,$\frac{π}{2}$),使得cosx<xD.?x∈(0,$\frac{π}{2}$),使得cosx<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某地區(qū)有100名學(xué)員參加交通法規(guī)考試,考試成績(jī)的頻率分布直方圖如圖所示.其中成績(jī)分組區(qū)間是:第1組:[75,80),第2組:[80,85),第3組:[85,90),第4組:[90,95),第5組:[95,100].
(1)求圖中a的值,并估計(jì)此次考試成績(jī)的中位數(shù)(結(jié)果保留一位小數(shù));
(2)在第2、4小組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)選取2人進(jìn)行面試,求至少有一人來(lái)自第2小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.球O半徑為R=13,球面上有三點(diǎn)A、B、C,AB=12$\sqrt{3}$,AC=BC=12,則四面體OABC的體積是( 。
A.60$\sqrt{3}$B.50$\sqrt{3}$C.60$\sqrt{6}$D.50$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個(gè)上界.已知函數(shù)$f(x)=1+a{(\frac{1}{2})^x}+{(\frac{1}{4})^x}$,$g(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}$.
(1)若函數(shù)g(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)在(1)的條件下,求函數(shù)g(x)在區(qū)間$[\frac{9}{7},3]$上的所有上界構(gòu)成的集合;
(3)若函數(shù)f(x)在[0,+∞)上是以5為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案