| (Ⅰ)證明:設(shè)AC與BD交于點(diǎn)G,則G為AC的中點(diǎn), 連EG,GH,又H為BC的中點(diǎn), ∴ 又 ∴ ∴四邊形EFHC為平行四邊形, ∴EC∥FH,而EG ∴FH∥平面EDB。 (Ⅱ)證明:由四邊形ABCD為正方形,有AB⊥BC, 又EF∥AB, ∴EF⊥BC,而EF⊥FB, ∴EF⊥平面BFC, ∴EF⊥FH,∴AB⊥FH, 又BF=FC,H為BC的中點(diǎn), ∴FH⊥BC, ∴FH⊥平面ABCD,∴FH⊥AC, 又FH∥EG,∴AC⊥EG, 又AC⊥BD,EG∩BD=G, ∴AC⊥平面EDB。 (Ⅲ)解:EF⊥FB,∠BFC=90°, ∴BF⊥平面CDEF,在平面CDEF內(nèi)過點(diǎn)F作FK⊥DE交DE的延長線于K, 則∠FKB為二面角B-DE-C的一個(gè)平面角, 設(shè)EF=1,則AB=2,F(xiàn)C= 又EF∥DC, ∴∠KEF=∠EDC, ∴ ∴ ∴∠FKB=60°, ∴二面角B-DE-C為60°。 |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ∥ |
. |
| ||
| 2 |
| ∥ |
. |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| ||
. |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| ∥ |
. |
| 1 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com