已知二次函數(shù)![]()
(1)若
試判斷函數(shù)
零點(diǎn)個(gè)數(shù);
(2)若對任意的
,且
<
,
(
>0),試證明:
>
成立。
(3)是否存在
,使
同時(shí)滿足以下條件:①對任意
,
,且
②對任意的
,都有
?若存在,求出
的值,若不存在,請說明理由。
(1) 零點(diǎn)為1個(gè)或2個(gè);(2)見解析;(3)
。
【解析】
試題分析:(1)∵f(-1)=0,∴a-b+c=0即b=a+c,故△=b2-4ac=(a+c)2-4ac=(a-c)2,
當(dāng)a=c時(shí),△=0,函數(shù)f(x)有一個(gè)零點(diǎn);當(dāng)a≠c時(shí),△>0,函數(shù)f(x)有兩個(gè)零點(diǎn).
(2)
-
=![]()
=
=![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011315255124585170/SYS201301131526250427149573_DA.files/image007.png"><
,
(
>0)所以
>0,即
-
>0,
所以
>
成立。
(3)假設(shè)存在a,b,c滿足題設(shè),由條件①知拋物線的對稱軸為x=-1且f(x)min=0;∴
即
,所以a=c,在條件②中令x=1,有0≤f(1)-1≤0,∴f(1)=1,即a+b+c=1,由
得
,所以存在
使f(x)同時(shí)滿足條件①②。
考點(diǎn):本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系。
點(diǎn)評:本題考查函數(shù)零點(diǎn)個(gè)數(shù)與方程根的個(gè)數(shù)問題,以及存在性問題的處理方式,屬于較難的題目.主要分析思路(1)通過對二次函數(shù)對應(yīng)方程的判別式進(jìn)行分析判斷方程根的個(gè)數(shù),從而得到零點(diǎn)的個(gè)數(shù);(2)存在性問題的一般處理方法就是假設(shè)存在,然后根據(jù)題設(shè)條件求得參數(shù)的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 3 |
| n |
| i=2 |
| lnai |
| ai2 |
| 2n2-n-1 |
| 4(n+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知二次函數(shù)
:
(1)若函數(shù)在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)問:是否存在常數(shù)
,當(dāng)
時(shí),
的值域?yàn)閰^(qū)間
,且![]()
的長度為
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高一下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題
已知二次函數(shù)![]()
(1)若
,求實(shí)數(shù)b,c的值;
(2)若![]()
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第一次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
對于函數(shù)
,若存在
,使
,則稱
是
的一
個(gè)"不動點(diǎn)".已知二次函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的不動點(diǎn);
(2)對任意實(shí)數(shù)
,函數(shù)
恒有兩個(gè)相異的不動點(diǎn),求
的取值范圍;
(3)在(2)的條件下,若
的圖象上
兩點(diǎn)的橫坐標(biāo)是
的不動點(diǎn),
且
兩點(diǎn)關(guān)于直線
對稱,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年廣東省高一上學(xué)期11月月考數(shù)學(xué) 題型:解答題
(本題滿分12分)
已知二次函數(shù)![]()
(1)若
,試判斷函數(shù)
零點(diǎn)個(gè)數(shù)
(2) 若對
且
,
,證明方程
必有一個(gè)實(shí)數(shù)根屬于![]()
(3)是否存在
,使
同時(shí)滿足以下條件①當(dāng)
時(shí), 函數(shù)
有最小值0;;②對
,都有
。若存在,求出
的值,若不存在,請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com