欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a∈R.
(1)討論函數(shù)g(x)=f′(x)-$\frac{x}{3}$的零點(diǎn)的個(gè)數(shù);
(2)若函數(shù)φ(x)=xf(x)-a-$\frac{1}{2}$ax2-x有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:x1x2>e2(e為自然對(duì)數(shù)的底數(shù)).

分析 (1)求出g(x)的表達(dá)式,求出a=-$\frac{1}{3}$x3+x,設(shè)h(x)=-$\frac{1}{3}$x3+x(x>0),根據(jù)函數(shù)的單調(diào)性求出h(x)的極大值,通過(guò)討論a的范圍,求出函數(shù)的零點(diǎn)個(gè)數(shù)即可;
(2)求出φ(x)的導(dǎo)數(shù),得到lnx1+lnx2=$\frac{(1+\frac{{x}_{2}}{{x}_{1}})ln\frac{{x}_{2}}{{x}_{1}}}{\frac{{x}_{2}}{{x}_{1}}-1}$,設(shè)t=$\frac{{x}_{2}}{{x}_{1}}$,問(wèn)題轉(zhuǎn)化為證明不等式lnt>$\frac{2(t-1)}{t+1}$成立,根據(jù)函數(shù)的單調(diào)性證出即可.

解答 (1)解:g(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$-$\frac{x}{3}$,令g(x)=0,得a=-$\frac{1}{3}$x3+x,
設(shè)h(x)=-$\frac{1}{3}$x3+x(x>0),則h′(x)=-(x+1)(x-1),
由此得,h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
所以h(x)的極大值為h(1)=$\frac{2}{3}$又h(0)=0,
故當(dāng)a>$\frac{2}{3}$時(shí),函數(shù)g(x)沒(méi)有零點(diǎn);
當(dāng)a=$\frac{2}{3}$或a≤0時(shí),函數(shù)g(x)有且只有一個(gè)零點(diǎn);
當(dāng)0<a<$\frac{2}{3}$時(shí),函數(shù)g(x)有兩個(gè)零點(diǎn).
(2)證明:依題意x1,x2是方程φ′(x)=0的兩個(gè)不相等的實(shí)數(shù)根,
而φ(x)=xlnx-$\frac{1}{2}$ax2-x,
φ′(x)=lnx-ax,于是$\left\{\begin{array}{l}{l{nx}_{1}-{ax}_{1}=0}\\{l{nx}_{2}-{ax}_{2}=0}\end{array}\right.$①,
解得:a=$\frac{l{nx}_{1}+l{nx}_{2}}{{{x}_{1}+x}_{2}}$,
欲證:x1x2>e2即證:lnx1+lnx2>2,
由①作差得lnx2-lnx1=a(x2-x1)消去a得,$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{2}-x}_{1}}$=$\frac{l{nx}_{1}+l{nx}_{2}}{{{x}_{1}+x}_{2}}$,
所以lnx1+lnx2=$\frac{(1+\frac{{x}_{2}}{{x}_{1}})ln\frac{{x}_{2}}{{x}_{1}}}{\frac{{x}_{2}}{{x}_{1}}-1}$,
設(shè)t=$\frac{{x}_{2}}{{x}_{1}}$,∵x2>x1>0,∴t>1,
故lnx1+lnx2=$\frac{(1+t)lnt}{t-1}$,(t>1),
下面只需證明:當(dāng)t>1時(shí),不等式$\frac{(1+t)lnt}{t-1}$>2成立,即不等式lnt>$\frac{2(t-1)}{t+1}$成立.
設(shè)函數(shù)m(t)=lnt-$\frac{2(t-1)}{t+1}$,t>1,
因?yàn)閙′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0
所以m(t)為(1,+∞)上的增函數(shù),故m(t)>m(1)=0,
因此,當(dāng)t>1時(shí),有l(wèi)nt>$\frac{2(t-1)}{t+1}$成立,
即lnx1+lnx2>2成立,故x1x2>e2

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=(x-1)2+alnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-1=0垂直,求a的值;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=x3-6x+5,x∈R.
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)求f(x)在區(qū)間[-2,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若向量$\overrightarrow a=({1,2})$與$\overrightarrow b=({4,m})$的夾角為銳角,則m的取值范圍是(-2,8)∪(8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若直線l1:ax+2y+a+3=0與l2::x+(a+1)y+4=0平行,則實(shí)數(shù)a的值為( 。
A.1B.-2C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=x2sinx的導(dǎo)函數(shù)為y′=2xsinx+x2cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求函數(shù)y=2lnx•x2的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)f(x)=2sin(ωx+$\frac{π}{3}}$)(ω>0)的圖象向右平移$\frac{π}{3ω}$個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在$[{-\frac{π}{3},\frac{π}{4}}]$上為增函數(shù),則ω的最大值為( 。
A.1B.2C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R).已知當(dāng)|x|≤1時(shí),|f(x)|≤1恒成立.
(1)若a=0,求實(shí)數(shù)b的取值范圍;
(2)求a-3b的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案