欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.設(shè)i是虛數(shù)單位,$\overline{z}$是復(fù)數(shù)z的共軛復(fù)數(shù),若復(fù)數(shù)z=3-i,則z•$\overline{z}$=10.

分析 直接利用公式$z•\overline{z}=|z{|}^{2}$得答案.

解答 解:由z=3-i,得
z•$\overline{z}$=$|z{|}^{2}=(\sqrt{{3}^{2}+(-1)^{2}})^{2}=10$.
故答案為:10.

點評 本題考查公式$z•\overline{z}=|z{|}^{2}$,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b∈R,a≠0,曲線y=$\frac{a+2}{x}$,y=ax+2b+1,若兩條曲線在區(qū)間[3,4]上至少有一個公共點,則a2+b2的最小值=$\frac{1}{100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.根據(jù)如圖所示的偽代碼,則輸出的S的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2co{s}^{2}α}\\{y=sin2α}\end{array}\right.$(α是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{1}{sinθ-cosθ}$.
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1上的任意一點P到曲線C2的最小距離,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-2)2+y2=2相切,則此雙曲線的離心率等于( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,圓O的半徑為2,AB,CE均為該圓的直徑,弦CD垂直平分半徑OA,垂足為F,沿直徑AB將半圓ACB所在平面折起,使兩個半圓所在的平面互相垂直(如圖2)
(Ⅰ)求四棱錐C-FDEO的體積
(Ⅱ)如圖2,在劣弧BC上是否存在一點P(異于B,C兩點),使得PE∥平面CDO?若存在,請加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等比數(shù)列{an}的前n項和為Sn,公比為q,若a3=2S2+1,a4=2S3+1,則q等于( 。
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,則z=2x+y的最大值為( 。
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,角α的頂點與原點重合,始邊與x軸的非負半軸重合,終邊過點P(-$\sqrt{3}$,-1),則sin(2α-$\frac{π}{2}$)=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案