欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.將棱長(zhǎng)為2的正四面體木塊切削成一個(gè)體積最大的球,則該球的體積是( 。
A.$\frac{\sqrt{6}π}{27}$B.$\sqrt{6}$πC.$\frac{\sqrt{3}}{2}$πD.$\frac{4}{3}$π

分析 由題意,所求球?yàn)檎拿骟wABCD的內(nèi)切球,如圖O為正四面體ABCD的內(nèi)切球的球心,說明OE是內(nèi)切球的半徑,運(yùn)用勾股定理計(jì)算,即可得到球的體積.

解答 解:由題意,所求球?yàn)檎拿骟wABCD的內(nèi)切球,如圖O為正四面體ABCD的內(nèi)切球的球心,
正四面體的棱長(zhǎng)為2,
所以O(shè)E為內(nèi)切球的半徑,設(shè)OA=OB=R,
在等邊三角形BCD中,BE=$\frac{\sqrt{3}}{3}$×2=$\frac{2\sqrt{3}}{3}$,
AE=$\sqrt{4-\frac{4}{3}}$=$\frac{2\sqrt{6}}{3}$.
由OB2=OE2+BE2,即有R2=($\frac{2\sqrt{6}}{3}$-R)2+$\frac{4}{3}$
解得,R=$\frac{\sqrt{6}}{2}$.OE=AE-R=$\frac{\sqrt{6}}{6}$,
則其內(nèi)切球的半徑是$\frac{\sqrt{6}}{6}$,
內(nèi)切球的體積為$\frac{4}{3}π$×($\frac{\sqrt{6}}{6}$)3=$\frac{\sqrt{6}}{27}π$.
故選:A.

點(diǎn)評(píng) 本題考查正四面體的內(nèi)切球半徑的求法,內(nèi)切球的半徑是正四面體的高的$\frac{1}{4}$,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)是a,用向量法證明AC⊥BD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直角坐標(biāo)系xOy中,銳角α的頂點(diǎn)是原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊交單位圓于點(diǎn)M(x1,y1),將角α的終邊按逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{3}$,交單位圓于點(diǎn)M(x2,y2).記f(α)=y1+y2
(I)求函數(shù)f(α)的值域;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊是a,b,c.若f(C)=$\sqrt{3}$,c=7,sinA+sinB=$\frac{13\sqrt{3}}{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求證:兩條平行直線Ax+By+C1=0與Ax+By+C2=0間的距離為d=$\frac{|{C}_{1}-{C}_{2}|}{\sqrt{{A}^{2}+{B}^{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知公比為q的等比數(shù)列{an},且滿足條件|q|>1,a2+a7=2,a4a5=-15,則a12=( 。
A.-$\frac{27}{25}$B.-$\frac{25}{3}$C.-$\frac{27}{25}$或-$\frac{25}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α是第二象限角,則由sinα=$\frac{\sqrt{3}}{2}$可推出cosα=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,2),則|$\overrightarrow{a}$|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.曲線y=x3的切線l與直線x+2y-1=0垂直,則切線l的方程為y=2x±$\frac{4\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個(gè)非零向量,
(1)若$\overrightarrow{OA}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OB}$=3$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{a}$-3$\overrightarrow$,求證:A,B,C三點(diǎn)共線;
(2)若$\overrightarrow{a}$=(-1,1)$\overrightarrow$=(2,1),t∈R,求|$\overrightarrow{a}$+t$\overrightarrow$|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案