(1)解:∵S
n+a
n=-n①
∴n≥2時(shí),S
n-1+a
n-1=-n+1②
①-②可得2a
n=a
n-1-1
∴2(a
n+1)=a
n-1+1
又a
1=-

,∴{a
n+1}是以

為首項(xiàng),

為公比的等比數(shù)列
∴a
n+1=

,∴a
n=

-1;
(2)解:b
n=ln(a
n+1)=nln

,∴a
nb
n=[

-1]•nln

,
∴{a
nb
n}的前n項(xiàng)和為ln

[

+2•

+…+n•

]-

•ln

令T
n=ln

[

+2•

+…+n•

],則

T
n=ln

[

+2•

+…+(n-1)•

+n•

],
兩式相減,可得T
n=ln

(2-

-

)
∴{a
nb
n}的前n項(xiàng)和為ln

(2-

-

)-

•ln

;
(3)證明:由(1)知,

=-2(

-

)
∴

=-2(

+

+…+

-

)
=-2(

)<2
∴

.
分析:(1)再寫一式,兩式相減,可得{a
n+1}是以

為首項(xiàng),

為公比的等比數(shù)列,從而可得數(shù)列{a
n}的通項(xiàng)公式;
(2)確定數(shù)列的通項(xiàng),利用錯(cuò)位相減法求和;
(3)確定通項(xiàng),利用裂項(xiàng)法求和,即可證得結(jié)論.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查不等式的證明,正確運(yùn)用數(shù)列的求和方法是關(guān)鍵.