已知數(shù)列{an}中,a1=
,an=2-
(n≥2,n∈N*),數(shù)列{bn}滿足bn=
(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}中的最大項(xiàng)和最小項(xiàng),并說(shuō)明理由.
(1)證明見(jiàn)解析(2)當(dāng)n=3時(shí),an取得最小值-1;當(dāng)n=4時(shí),an取得最大值3.
(1)證明 因?yàn)閍n=2-
(n≥2,n∈N*),bn=
.
所以當(dāng)n≥2時(shí),bn-bn-1=
-![]()
=
-
=
-
=1.
又b1=
=-
.所以,數(shù)列{bn}是以-
為首項(xiàng),以1為公差的等差數(shù)列.
(2)解 由(1)知,bn=n-
,則an=1+
=1+
.
設(shè)函數(shù)f(x)=1+
,易知f(x)在區(qū)間(-∞,
)和(
,+∞)內(nèi)為減函數(shù).
所以,當(dāng)n=3時(shí),an取得最小值-1;當(dāng)n=4時(shí),an取得最大值3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| an |
| 1+2an |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| n+1 |
| 2 |
| 2n |
| an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2 |
| 1 |
| an |
| lim |
| n→∞ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com